

The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D

UBC Math Bio Seminar Talk

Merlin Pelz

Ph.D. candidate at the University of British Columbia January 10, 2023

Merlin Pelz Ph.D. candidate at the University of British Columbia

Merlin Pelz Ph.D. candidate at the University of British Columbia

[The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D](#page-0-0)

2/54

 ϵ

Motivation

Merlin Pelz Ph.D. candidate at the University of British Columbia

[Motivation](#page-2-0) [1-D Setting](#page-10-0) [2-D Setting](#page-31-0) [Discussion & Next Steps](#page-42-0) [References](#page-55-0) [References](#page-55-0)

 \triangleright 1952: Alan Turing and reaction-diffusion (RD) systems [\[44\]](#page-63-0):

 $\partial_t u(t, x) = D_u \Delta u + f(u, v), \qquad (t, x) \in (0, \infty) \times (0, L)$ $\partial_t v(t, x) = D_v \Delta v + g(u, v)$

with certain boundary conditions, e.g.,

 $\partial_x u(t,0) = 0 = \partial_x v(t,0), \quad \partial_x u(t,1) = 0 = \partial_x v(t,1).$

For $D_{\mu} = 0 = D_{\nu}$, one obtains the uniform (uncoupled) steady-state (U_e, V_e) through $f(u_e, v_e) = 0 = g(u_e, v_e)$; should be linearly stable.

With $D_u > 0$, $D_v > 0$, assuming separation of variables, general eigenperturbations of the linearized system about $(u_e, v_e)^T$ are

$$
\binom{\zeta}{\eta} e^{\lambda t} \cos(xk\pi/L), \quad k \in \mathbb{N}_0.
$$

Searching for when $Re(\lambda) > 0$, one concludes that

$$
\frac{D_v}{D_u}\partial_u f(u_e, v_e) + \partial_v g(u_e, v_e) > 2\sqrt{\frac{D_v}{D_u}\det(J_0)} \text{ with } J_0 := \begin{pmatrix} \partial_u f(u_e, v_e) & \partial_v f(u_e, v_e) \\ \partial_u g(u_e, v_e) & \partial_v g(u_e, v_e) \end{pmatrix}
$$

has to be satisfied for exponentially growing non-uniform perturbations.

[Motivation](#page-2-0) [1-D Setting](#page-10-0) [2-D Setting](#page-31-0) [Discussion & Next Steps](#page-42-0) [References](#page-55-0) [References](#page-55-0)

 \triangleright 1952: Alan Turing and reaction-diffusion (RD) systems [\[44\]](#page-63-0):

 $\partial_t u(t, x) = D_u \Delta u + f(u, v), \qquad (t, x) \in (0, \infty) \times (0, L)$ $\partial_t v(t, x) = D_v \Delta v + g(u, v)$

with certain boundary conditions, e.g.,

 $\partial_x u(t,0) = 0 = \partial_x v(t,0), \quad \partial_x u(t,1) = 0 = \partial_x v(t,1).$

For $D_u = 0 = D_v$, one obtains the uniform (uncoupled) steady-state (U_e, V_e) through $f(u_e, v_e) = 0 = g(u_e, v_e)$; should be linearly stable. With $D_u > 0$, $D_v > 0$, assuming separation of variables, general eigenperturbations of the linearized system about $(u_e, v_e)^T$ are

$$
\binom{\zeta}{\eta}\,e^{\lambda t}\cos(xk\pi/L),\quad k\in\mathbb{N}_0.
$$

Searching for when $Re(\lambda) > 0$, one concludes that

$$
\frac{D_v}{D_u}\partial_u f(u_e, v_e) + \partial_v g(u_e, v_e) > 2\sqrt{\frac{D_v}{D_u} \det(J_0)} \text{ with } J_0 := \begin{pmatrix} \partial_u f(u_e, v_e) & \partial_v f(u_e, v_e) \\ \partial_u g(u_e, v_e) & \partial_v g(u_e, v_e) \end{pmatrix}
$$

has to be satisfied for exponentially growing non-uniform perturbations.

Requirement of $D_v \gg D_u$ unless finely tuned

When ↑ reasonable, it has been shown (cf. [\[45\]](#page-63-1), [\[46\]](#page-64-1), [\[21\]](#page-58-0), [\[22\]](#page-59-0)) that two-component RD systems admit wide range of spatially localized patterns and instabilities that occur in "far-from-equilibrium" regime, far from where a Turing linear stability analysis will provide any insight into pattern-forming properties.

- ► FitzHugh-Nagumo neuronal kinetics, Brusselator and Gray-Scott model (glycolysis cycle)[\[45\]](#page-63-1)[\[46\]](#page-64-1),
- Intracellular pattern formation via Min protein system $[21][22]$ $[21][22]$.

However, *often unrealistic* in cell systems as signalling molecules diffuse on comparable time scales

- \triangleright Nodal/Lefty morphogen system patterns germ layers during early embryogenesis [\[33\]](#page-61-0) (activator Nodal has same local diffusivity as Lefty but *[∼]* ⁹⁰% lower effective diffusivity; only this makes Turing theory
- \triangleright Scientists trying to make Turing instability range bigger by adding new model features & fine tuning [\[7\]](#page-56-0) [\[2\]](#page-55-1)

Requirement of $D_v \gg D_u$ unless finely tuned

When ↑ reasonable, it has been shown (cf. [\[45\]](#page-63-1), [\[46\]](#page-64-1), [\[21\]](#page-58-0), [\[22\]](#page-59-0)) that two-component RD systems admit wide range of spatially localized patterns and instabilities that occur in "far-from-equilibrium" regime, far from where a Turing linear stability analysis will provide any insight into pattern-forming properties.

► FitzHugh-Nagumo neuronal kinetics, Brusselator and Gray-Scott model (glycolysis cycle)[\[45\]](#page-63-1)[\[46\]](#page-64-1),

Intracellular pattern formation via Min protein system $[21][22]$ $[21][22]$. However, *often unrealistic* in cell systems as signalling molecules diffuse on comparable time scales

- \triangleright Nodal/Lefty morphogen system patterns germ layers during early embryogenesis [\[33\]](#page-61-0) (activator Nodal has same local diffusivity as Lefty but *[∼]* ⁹⁰% lower effective diffusivity; only this makes Turing theory applicable)
- \triangleright Scientists trying to make Turing instability range bigger by adding new model features & fine tuning [\[7\]](#page-56-0) [\[2\]](#page-55-1)

Work on overcoming the diffusivity ratio condition

- Fine-tuning allows for not vastly different diffusivities [\[37\]](#page-62-0): tuned reaction kinetics lead to almost neutrally stable steady-state (has evolution created organisms fine-tuned throughout yet?),
- ▶ *Adding immobile species* to system ("2+1") allows for equal diffusivities [\[28\]](#page-60-0) [\[29\]](#page-60-1): reaction kinetics everywhere? Also, can lead to discontinuities,
- Incorporation of *randomness* in RD systems makes diffusivity ranges for instability much wider [\[20\]](#page-58-1): no rigorous analytical theory yet and continuous in space.

Our approach

- \triangleright Inspired by (active membrane)-(bulk diffusion field) articles (FN kinetics 1-D [\[15\]](#page-57-0), GM kinetics 2-D [\[31\]](#page-60-2))
- \triangleright We diffusively couple intra-compartmental reactions, all with two species (one extrac. species: [\[19\]](#page-58-2) [\[17\]](#page-58-3) [\[18\]](#page-58-4) [\[34\]](#page-61-1) (1-D) [\[16\]](#page-57-1) [\[27\]](#page-60-3) [\[40\]](#page-62-1) [\[14\]](#page-57-2) (2-D)) and build the corresponding theory,
- If We show that the *ratio of inhibitor membrane reaction rate to activator membrane reaction rate* is key bifurcation parameter *ρ*.

Possible scenarios:

- \triangleright Collective behaviour occurring for microemulsion consisting of Belousov-Zhabotinsky (BZ) chemical reactants that are confined within small *aqueous droplets* that are dispersed in oil [\[43\]](#page-63-2) (see also [\[9\]](#page-56-1), [\[5\]](#page-55-2))
- \triangleright Membrane attachment mechanism, which reduces the effective diffusivity of one of the morphogens; referred to in [\[33\]](#page-61-0) as a

Our approach

- \triangleright Inspired by (active membrane)-(bulk diffusion field) articles (FN kinetics 1-D [\[15\]](#page-57-0), GM kinetics 2-D [\[31\]](#page-60-2))
- \triangleright We diffusively couple intra-compartmental reactions, all with two species (one extrac. species: [\[19\]](#page-58-2) [\[17\]](#page-58-3) [\[18\]](#page-58-4) [\[34\]](#page-61-1) (1-D) [\[16\]](#page-57-1) [\[27\]](#page-60-3) [\[40\]](#page-62-1) [\[14\]](#page-57-2) (2-D)) and build the corresponding theory,
- If We show that the *ratio of inhibitor membrane reaction rate to activator membrane reaction rate* is key bifurcation parameter *ρ*.

Possible scenarios:

- \triangleright Collective behaviour occurring for microemulsion consisting of Belousov-Zhabotinsky (BZ) chemical reactants that are confined within small *aqueous droplets* that are dispersed in oil [\[43\]](#page-63-2) (see also [\[9\]](#page-56-1), [\[5\]](#page-55-2))
- \blacktriangleright Membrane attachment mechanism, which reduces the effective diffusivity of one of the morphogens; referred to in [\[33\]](#page-61-0) as a *binding-mediated hindrance* diffusion process.

1-D setting: atomic domain

[The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D](#page-0-0)

 $\overline{0}$

 $L \$

Merlin Pelz Ph.D. candidate at the University of British Columbia

[The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D](#page-0-0)

 L

Merlin Pelz Ph.D. candidate at the University of British Columbia

 Ω

[The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D](#page-0-0)

 Ω L

Merlin Pelz Ph.D. candidate at the University of British Columbia

11/54

Merlin Pelz Ph.D. candidate at the University of British Columbia

[The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D](#page-0-0)

Consider intra-compartmental reaction kinetics coupled through a linear diffusion field on $(0, L)$ with two compartments on the boundary:

bulk
\nbulk
\n
$$
\begin{cases}\n\frac{\partial_t u(t, x) = D_u \partial_{xx} u - \sigma_u u, \quad x \in (0, L)}{\partial_t v(t, x) = D_v \partial_{xx} v - \sigma_v v, \quad x \in (0, L)} \\
\frac{\partial_u \partial_x u(t, 0) = \beta_u (u(t, 0) - \mu_1(t)) \quad \text{(boundary conditions)}}{D_v \partial_x v(t, 0) = \beta_v (v(t, 0) - \eta_1(t))} \\
-\frac{\partial_u \partial_x u(t, L)}{-\beta_v u(t, L)} = \beta_v (u(t, L) - \mu_2(t)) \\
-D_v \partial_x v(t, L) = \beta_v (v(t, L) - \eta_2(t)) \\
-\frac{\mu_1}{2} = f(\mu_1, \eta_1) + D_u \partial_x u(t, 0) \quad \text{(reaction kinetics at } x = 0) \\
\frac{\dot{\eta}_1}{\dot{\eta}_2} = f(\mu_2, \eta_2) - D_u \partial_x u(t, L) \quad \text{(reaction kinetics at } x = L)} \\
\frac{\dot{\eta}_2}{\dot{\eta}_2} = g(\mu_2, \eta_2) - D_v \partial_x v(t, L)\n\end{cases}
$$

with, e.g., identical intracellular FN kinetics ($q > 0$, $z > 0$, $\delta > 0$) [\[15\]](#page-57-0):

$$
f(\mu,\eta) := \mu - q(\mu-2)^3 + 4 - \eta,
$$

\n
$$
g(\mu,\eta) := \delta\mu z - \delta\eta.
$$

Important properties of the compartmental-reaction diffusion system:

- \triangleright Does not admit nontrivial spatially uniform state \Rightarrow No Turing analysis possible
- \blacktriangleright Instead, when compartments are identical, we can construct spatially *non-uniform* steady-state solution that is *symmetric*. This solution is the *base-state* for our analysis.
- I We are interested in bifurcations from base state leading to *asymmetric structures*

 \Rightarrow More sophisticated steady-state construction and linear stability analysis needed

 \blacktriangleright Emergence of such asymmetry is important in the sciences (e.g., embryogenesis [\[41\]](#page-63-3))

Solving for the *global region* equilibrium yields through the fluxes a nonlinear algebraic system (NAS) for all coupled cellular equilibria:

$$
0 = \begin{pmatrix} g(\mu_1^e, \eta_1^e) \\ g(\mu_2^e, \eta_2^e) \end{pmatrix} - \frac{\beta_v}{\gamma_v^2 - 1} \widetilde{A} \begin{pmatrix} \eta_1^e \\ \eta_2^e \end{pmatrix}
$$

where $\widetilde{A} := \begin{pmatrix} \gamma_v \cosh(\omega_v L) - 1 & \cosh(\omega_v L) - \gamma_v \\ \cosh(\omega_v L) - \gamma_v & \gamma_v \cosh(\omega_v L) - 1 \end{pmatrix}$

$$
0 = \begin{pmatrix} f(\mu_1^e, \eta_1^e) \\ f(\mu_2^e, \eta_2^e) \end{pmatrix} - \frac{\beta_u}{\gamma_u^2 - 1} B \begin{pmatrix} \mu_1^e \\ \mu_2^e \end{pmatrix}
$$

where $B := \begin{pmatrix} \gamma_u \cosh(\omega_u L) - 1 & \cosh(\omega_u L) - \gamma_u \\ \cosh(\omega_u L) - \gamma_u & \gamma_u \cosh(\omega_u L) - 1 \end{pmatrix}$

with $\gamma_{\Box} := \cosh(\omega_{\Box} L) + \frac{\beta_{\Box}}{\beta_{\Box}\omega_{\Box}} \sinh(\omega_{\Box} L)$ and freq. $\omega_{\Box} := \sqrt{\sigma_{\Box}/D_{\Box}}$, leads with linear inhibitor-dependence in $g(\mu, \eta) = g_1(\mu) - g_2 \eta$ to

$$
\begin{pmatrix} f(\mu_1^e, (1,0)(\frac{\beta_v}{\gamma_v^2 - 1}\widetilde{A} + g_2 l)^{-1}(g_1(\mu_1^e), g_1(\mu_2^e))^T) \\ f(\mu_2^e, (0,1)(\frac{\beta_v}{\gamma_v^2 - 1}\widetilde{A} + g_2 l)^{-1}(g_1(\mu_1^e), g_1(\mu_2^e))^T) \end{pmatrix} - \frac{\beta_u}{\gamma_u^2 - 1} B \begin{pmatrix} \mu_1^e \\ \mu_2^e \end{pmatrix} = 0.
$$
 (1)

15/54

Solving for the *global region* equilibrium yields through the fluxes a nonlinear algebraic system (NAS) for all coupled cellular equilibria:

$$
0 = \begin{pmatrix} g(\mu_1^e, \eta_1^e) \\ g(\mu_2^e, \eta_2^e) \end{pmatrix} - \frac{\beta_v}{\gamma_v^2 - 1} \widetilde{A} \begin{pmatrix} \eta_1^e \\ \eta_2^e \end{pmatrix}
$$

where $\widetilde{A} := \begin{pmatrix} \gamma_v \cosh(\omega_v L) - 1 & \cosh(\omega_v L) - \gamma_v \\ \cosh(\omega_v L) - \gamma_v & \gamma_v \cosh(\omega_v L) - 1 \end{pmatrix}$

and

$$
0 = \begin{pmatrix} f(\mu_1^e, \eta_1^e) \\ f(\mu_2^e, \eta_2^e) \end{pmatrix} - \frac{\beta_u}{\gamma_u^2 - 1} B \begin{pmatrix} \mu_1^e \\ \mu_2^e \end{pmatrix}
$$

where $B := \begin{pmatrix} \gamma_u \cosh(\omega_u L) - 1 & \cosh(\omega_u L) - \gamma_u \\ \cosh(\omega_u L) - \gamma_u & \gamma_u \cosh(\omega_u L) - 1 \end{pmatrix}$

with $\gamma_{\Box} := \cosh(\omega_{\Box}L) + \frac{\beta_{\Box}}{\beta_{\Box}\omega_{\Box}}\sinh(\omega_{\Box}L)$ and freq. $\omega_{\Box} := \sqrt{\sigma_{\Box}/D_{\Box}}$, leads with linear inhibitor-dependence in $g(\mu, \eta) = g_1(\mu) - g_2\eta$ to

$$
\begin{pmatrix} f(\mu_1^e, (1,0)(\frac{\beta_v}{\gamma_v^2-1}\widetilde{A} + g_2I)^{-1}(g_1(\mu_1^e), g_1(\mu_2^e))^T) \\ f(\mu_2^e, (0,1)(\frac{\beta_v}{\gamma_v^2-1}\widetilde{A} + g_2I)^{-1}(g_1(\mu_1^e), g_1(\mu_2^e))^T) \end{pmatrix} - \frac{\beta_u}{\gamma_u^2 - 1} B \begin{pmatrix} \mu_1^e \\ \mu_2^e \end{pmatrix} = 0.
$$
 (1)

Merlin Pelz Ph.D. candidate at the University of British Columbia

Now the symmetric equilibrium (μ_1^e, μ_2^e)
through $T = \mu_e(1, 1)^T$ is easily obtained through

$$
f(\mu_e, \frac{g_1(\mu_e)}{a_1}) - \frac{\beta_u}{\gamma_u^2 - 1} b_1 \mu_e = 0,
$$

and, perturbing about it by ϕ using [\(1\)](#page-17-0) gives, to first order,

$$
\begin{pmatrix}J_{11} & J_{12}\\J_{21} & J_{22}\end{pmatrix}\phi - \frac{\beta_u}{\gamma_u^2 - 1}B\phi = 0.
$$

Since the coupling matrices \tilde{A} and B are circulant, the eigenperturbations are $\phi = c(1, 1)^T$ and $\phi = c(1, -1)^T$, $|c| \ll 1$, hence, we are landing on the bifurcation point $(u, 0, z)$ solving bifurcation point (μ_e, ρ_p, z) solving

$$
\partial_{\mu} f(\mu_e, \frac{g_1(\mu_e)}{a_1}) + \partial_{\eta} f(\mu_e, \frac{g_1(\mu_e)}{a_1}) \frac{g_1'(\mu_e)}{a_1} - \frac{\beta_u}{\gamma_u^2 - 1} b_1 = 0 \qquad \text{(symmetric)}
$$
\n
$$
\partial_{\mu} f(\mu_e, \frac{g_1(\mu_e)}{a_1}) + \partial_{\eta} f(\mu_e, \frac{g_1(\mu_e)}{a_1}) \frac{g_1'(\mu_e)}{a_2} - \frac{\beta_u}{\gamma_u^2 - 1} b_2 = 0 \qquad \text{(asymmetric)}
$$

with bifurcation parameter $\rho = \beta_v / \beta_u$ and possibly, in case of FN kinetics, another one (here *z*).

Solution continuation from the bifurcation point with MatCont [\[6\]](#page-56-2) gives

Figure: Left: μ_1^e versus *z* showing that asymmetric equilibria exist inside a pitchfork bubble delimited by $z_{P,1} \approx 4.48430$ and $z_{P,2} \approx 5.07294$ when $\rho = \beta_v/\beta_u = 80$. Right: For $z = z_{P,1}$, there is a symmetry-breaking bifurcation of the symmetric steady-state as ρ increases past the critical value $\rho_p \approx 80$. Parameters: $D_u = 1, D_v = 3, \sigma_u = \sigma_v = 1, \epsilon = 0.7, q = 1, L = 1, \text{ and } \beta_u = 0.1.$

Merlin Pelz Ph.D. candidate at the University of British Columbia

A partially overlapping Hopf bubble also exists, found by

 \triangleright introducing into PDE-ODE system the general perturbations $u(t, x) = u_e(x) + \phi(x)e^{\lambda t}, v(t, x) = v_e(x) + \psi(x)e^{\lambda t}, \mu_j(t) = u_e(x)e^{\lambda t}, u_s(t, x) = u_e(x)e^{\lambda t}$ λ *t* $V(t, x) = V_a(x) + i h(x) e^{\lambda t}$ $\mu_e + \xi_j e^{\lambda t}$, $\eta = \eta_e + \zeta_j e^{\lambda t}$, where $|\phi| \ll 1$, $|\psi| \ll 1$, $|\xi_j| \ll 1$ and $|\xi_j| \ll 1$ for $i \in \{1, 2\}$ *|ζj |* 1 for *j ∈ {*1*,* 2*}*,

 \blacktriangleright linearizing to obtain globally coupled matrix eigenvalue problem (GCEP) det $(\mathcal{M}(\lambda)) = 0$ for the (complex) growth rates λ .
Pitchfork (z_{p1} , z_{p2}) & Hopf (z_{p1} , z_{p2}) bifurcation points

18/54

Figure: For initial condition near unstable symmetric branch, and for *z ≈* 4*.*52211 and $\rho = 80$, we predict that asymmetric solution branch is linearly stable since $z_{P,1} \leq z \leq z_{H,1}$. Numerically solved with our CN-RK4 IMEX method in Julia [\[4\]](#page-55-3). Merlin Pelz Ph.D. candidate at the University of British Columbia

19/54

1-D setting: cells on ring

Merlin Pelz Ph.D. candidate at the University of British Columbia

Merlin Pelz Ph.D. candidate at the University of British Columbia

NAS for all equilibria similarly obtained as above, with $g(\mu, \eta) = g_1(\mu) - g_2\eta$,

$$
\begin{pmatrix} f(\mu_1^e, (1,0)A^{-1}(g_1(\mu_1^e), g_1(\mu_2^e)))^T) \\ f(\mu_2^e, (0,1)A^{-1}(g_1(\mu_1^e), g_1(\mu_2^e)))^T) \end{pmatrix} - \frac{\beta_u}{\gamma_u^2 - 4} B \begin{pmatrix} \mu_1^e \\ \mu_2^e \end{pmatrix} = 0,
$$

where the coupling matrices *A* and *B* are now

$$
A := \frac{\beta_v}{\gamma_v^2 - 4} \widetilde{A} + g_2 I, \qquad \widetilde{A} := \begin{pmatrix} 2\gamma_v \cosh(\omega_v L) - 4 & 4\cosh(\omega_v L) - 2\gamma_v \\ 4\cosh(\omega_v L) - 2\gamma_v & 2\gamma_v \cosh(\omega_v L) - 4 \end{pmatrix},
$$

$$
B := \begin{pmatrix} 2\gamma_u \cosh(\omega_u L) - 4 & 4\cosh(\omega_u L) - 2\gamma_u \\ 4\cosh(\omega_u L) - 2\gamma_u & 2\gamma_u \cosh(\omega_u L) - 4 \end{pmatrix}.
$$

Merlin Pelz Ph.D. candidate at the University of British Columbia

Perturbing about the symmetric equilibrium with $u(t, x) = u_e(x) + \phi(x)e^{\lambda t}$, $v(t, x) = v_e(x) + \psi(x)e^{\lambda t}$, $\mu_j(t) =$
 $\mu_e + \xi_j e^{\lambda t}$, $\eta = \eta_e + \zeta_j e^{\lambda t}$, where $|\phi| \ll 1$, $|\psi| \ll 1$, $|\xi_j| \ll 1$ and $|\zeta_j| \ll 1$ λ *t* $V(t, x) = V_a(x) + i b(x) \rho^{\lambda t}$ *μ*_{*e*} + *ξ*_{*j*}**e**^{λ *l*}, *η* = *η_e* + *ζ*_{*j*}**e**
for *i* ∈ {1, 2} we solve o for *^j ∈ {*1*,* ²*}*, we solve on *fundamental domain* [0*, ^L*] with ⁰ *[∼] ^L* and a Floquet-type boundary condition:

Hence, using translational invariance,

$$
Z^n=1 \quad \Leftrightarrow \quad Z_k=e^{2\pi ik/n}, \quad \text{for } k\in\{0,\dots,n-1\}.
$$

With
$$
\Omega_u = \sqrt{(\lambda + \sigma_u)/D_u}
$$
, $\Omega_v = \sqrt{(\lambda + \sigma_v)/D_v}$ and $G_{\Omega_u, Z}$ (L/2),
 $G_{\Omega_v, Z}$ (L/2) of quasi-periodic Green function,

- ► GCEP det $(M_{Z_k}(\lambda)) = 0$ for each perturbation mode Z_k (compare with eigenperturbations) eigenperturbations)
- \triangleright Special case $\lambda = 0$

Now for generic intracellular reaction (Rauch-Millonas) kinetics to universal signal transduction system proposed in [\[39\]](#page-62-2)

$$
\dot{\mu} = f(\mu, \eta) := c_u - q_u \mu + \frac{\alpha_1^{\mu} \mu}{\gamma_1^{\mu} + \mu} - \frac{\alpha_2^{\mu} \mu}{\gamma_2^{\mu} + \mu}
$$

\n
$$
\dot{\eta} = g(\mu, \eta) := c_v + w_v \mu - q_v \eta,
$$

we identify $g_1(\mu) = c_v + w_v \mu$ and $g_2 = q_v$.

Merlin Pelz Ph.D. candidate at the University of British Columbia

With
$$
\Omega_u = \sqrt{(\lambda + \sigma_u)/D_u}
$$
, $\Omega_v = \sqrt{(\lambda + \sigma_v)/D_v}$ and $G_{\Omega_u, Z}$ (L/2),
\n $G_{\Omega_v, Z}$ (L/2) of quasi-periodic Green function,

- ► GCEP det $(M_{Z_k}(\lambda)) = 0$ for each perturbation mode Z_k (compare with eigenperturbations) eigenperturbations)
- \triangleright Special case $\lambda = 0$

Now for generic intracellular reaction (Rauch-Millonas) kinetics to universal signal transduction system proposed in [\[39\]](#page-62-2)

$$
\dot{\mu} = f(\mu, \eta) := c_u - q_u \mu + \frac{\alpha_1^u \mu}{\gamma_1^u + \mu} - \frac{\alpha_2^u \mu \eta}{\gamma_2^u + \mu}
$$

$$
\dot{\eta} = g(\mu, \eta) := c_v + w_v \mu - q_v \eta,
$$

we identify $g_1(\mu) = c_v + w_v \mu$ and $g_2 = g_v$.

Figure: Bifurcation diagrams for Rauch-Millonas kinetics [\(24\)](#page-27-0) with $n = 2$ computed from [\(22\)](#page-25-0) using MatCont [\[6\]](#page-56-2). Left: Plot of μ_1^e showing that asymmetric steady-states occur inside a degenerate pitchfork bubble bounded by $w_v^{P,1} \approx 6.34518$ and $w_v^{P,2} \approx 7.64062$ when $\rho = \frac{\beta_v}{\beta_u} = 7$. Right: Supercritical pitchfork bifurcation in ρ from the symmetric branch occurs when $W_V = W_V^{P,2}$. Stable asymmetric branches occur past this threshold in *ρ*.
Parameters: $D = D = 1.9 \times 10^{10} \text{ G} = 2.7 \times 10^{10} \text{ G} = 2.7 \times 10^{10} \text{ G}$ Parameters: $D_u = D_v = 1$, $\sigma_u = \sigma_v = 0.01$, $c_u = c_v = 1$, $q_u = 1/100$, $q_v = 7$, $\alpha_1^u = 600$, $\alpha^u = 600$, $\alpha^u = 1/10$, $\alpha^u = 1/10$, and $\beta_v = 0.3$ 600, $\alpha_2^{\mu} = 6$, $\gamma_1^{\mu} = 100$, $\gamma_2^{\mu} = 1/10$, and $\beta_{\mu} = 0.3$.

Figure: Rauch-Millonas kinetics with $n = 2$. For an initial condition near the unstable symmetric branch, and for $\rho = 15$ and $W_V = W_V^{P,2}$, the full time-dependent solution computed
weing the BE BK4 IMEX scheme of 1381 converges to a stable asymmetric steady state using the BE-RK4-IMEX scheme of [\[38\]](#page-62-3) converges to a stable asymmetric steady-state.

2-D setting

Merlin Pelz Ph.D. candidate at the University of British Columbia

[The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D](#page-0-0)

Instead of an infinite 1-D consideration, it may be a step towards reality to consider a finite domain in 2-D.

28/54

Merlin Pelz Ph.D. candidate at the University of British Columbia

Instead of an infinite 1-D consideration, it may be a step towards reality to consider a finite domain in 2-D.

$$
\begin{cases}\n\partial_t u = D_u \Delta u - \sigma_u u, & \mathbf{x} \in \Omega \setminus \bigcup_{j=1}^m \Omega_j, \\
\partial_t v = D_v \Delta v - \sigma_v v, & \mathbf{x} \in \Omega \setminus \bigcup_{j=1}^m \Omega_j, \\
\partial_{\tilde{n}} u = \partial_{\tilde{n}} v = 0, & \mathbf{x} \in \partial \Omega,\n\end{cases}
$$
\nreaction fluxes\n
$$
\begin{cases}\n\epsilon D_u \partial_{\eta_j} u = d_1^u u - d_2^u \mu_j, & \mathbf{x} \in \partial \Omega_j, \\
\epsilon D_v \partial_{\eta_j} v = d_1^v v - d_2^v \eta_j, & \mathbf{x} \in \partial \Omega_j,\n\end{cases}
$$
\ncommantments\n
$$
\begin{cases}\n\frac{d\mu_j}{dt} = f(\mu_j, \eta_j) + \frac{1}{\epsilon} \int_{\partial \Omega_j} (d_1^u u - d_2^u \mu_j) \, dS, \\
\frac{d\eta_j}{dt} = g(\mu_j, \eta_j) + \frac{1}{\epsilon} \int_{\partial \Omega_j} (d_1^v v - d_2^v \eta_j) \, dS,\n\end{cases}
$$

for $j \in \{1, ..., m\}$, with outward normal vectors n_j to Ω_j .

[Motivation](#page-2-0) [1-D Setting](#page-10-0) [2-D Setting](#page-31-0) [Discussion & Next Steps](#page-42-0) [References](#page-55-0) [References](#page-55-0)

In the *j*th *local region*, within $O(\varepsilon)$ of boundary of *j*th cell,

- \blacktriangleright local coordinates $\mathbf{y}_j = \varepsilon^{-1}(\mathbf{x} \mathbf{x}_j), p_j := |\mathbf{y}_j|$
- \triangleright local variables $U_i(\mathbf{x}) = U_i(\epsilon \mathbf{y}_i + \mathbf{x}_i)$, and $V_i(\mathbf{x}) = V_i(\epsilon \mathbf{y}_i + \mathbf{x}_i)$ \blacktriangleright

$$
\Delta U_j = 0 \qquad \Delta V_j = 0 \qquad \text{for } p_j \ge 1
$$
\n
$$
D_u \partial_{p_j} U_j = d_1^u U_j - d_2^u \mu_j \quad \text{and} \quad D_v \partial_{p_j} V_j = d_1^v V_j - d_2^v \eta_j \quad \text{on } p_j = 1
$$

 \triangleright radially symmetric solutions to these problems are

$$
U_j(p_j) = A_j^v \ln p_j + \frac{1}{d_1^u} \left(D_u A_j^u + d_2^u \mu_j \right) , \qquad V_j(p_j) = A_j^v \ln p_j + \frac{1}{d_1^v} \left(D_v A_j^v + d_2^v \eta_j \right) ,
$$

for $j \in \{1, ..., m\}$, where A_j^U and A_j^V for $j \in \{1, ..., m\}$ are constants to be determined \triangleright substituting into the steady-state problem

$$
f(\mu_j, \eta_j) + 2\pi D_u A_j^u = 0, \qquad g(\mu_j, \eta_j) + 2\pi D_v A_j^v = 0, \qquad j \in \{1, ..., m\}.
$$

Merlin Pelz Ph.D. candidate at the University of British Columbia

[The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D](#page-0-0)

In the *global region*

$$
\Delta U - \omega_u^2 U = 0, \quad \mathbf{x} \in \Omega \setminus \{\mathbf{x}_1, \dots, \mathbf{x}_m\}; \qquad \partial_n U = 0, \quad \mathbf{x} \in \partial \Omega;
$$

$$
U \sim A_j^u \log |\mathbf{x} - \mathbf{x}_j| + \frac{A_j^u}{v} + \frac{1}{d_1^u} (D_u A_j^u + d_2^u \mu_j), \quad \text{as} \quad \mathbf{x} \to \mathbf{x}_j, j \in \{1, \dots, m\},
$$

where $v := -1/\log \varepsilon \ll 1$ and $\omega_u := \sqrt{\sigma_u/D_u}$. Similarly, for *V*.

► With the reduced-wave Green function G_ω solving

$$
\Delta G_{\omega} - \omega^2 G_{\omega} = -\delta(\mathbf{x} - \mathbf{x}_j), \quad \mathbf{x} \in \Omega; \qquad \partial_n G_{\omega} = 0, \quad \mathbf{x} \in \partial \Omega;
$$

$$
G_{\omega} \sim -\frac{1}{2\pi} \log |\mathbf{x} - \mathbf{x}_j| + R_{\omega}(\mathbf{x}_j) + o(1), \quad \text{as} \quad \mathbf{x} \to \mathbf{x}_j.
$$

we get

$$
U(\mathbf{x}) = -2\pi \sum_{i=1}^m A_i^u G_{\omega_u}(\mathbf{x}; \mathbf{x}_i), \qquad V(\mathbf{x}) = -2\pi \sum_{i=1}^m A_i^v G_{\omega_v}(\mathbf{x}; \mathbf{x}_i).
$$

Merlin Pelz Ph.D. candidate at the University of British Columbia

[Motivation](#page-2-0) [1-D Setting](#page-10-0) [2-D Setting](#page-31-0) [Discussion & Next Steps](#page-42-0) [References](#page-55-0) [References](#page-55-0)

The singularity behaviours of U, V, $G_{\omega_{\nu}}$ and $G_{\omega_{\nu}}$ directly yield linear algebraic systems for $\mathcal{A}^{\mu} := (A_1^{\mu}, \dots, A_m^{\mu})^T$ and $\mathcal{A}^{\nu} := (A_1^{\nu}, \dots, A_m^{\nu})^T$,
given in matrix form by given in matrix form by

$$
\left(\left(1+\frac{\nu D_u}{d_1^u}\right)I+2\pi\nu\mathcal{G}_{\omega_u}\right)\mathcal{A}^u=-\frac{\nu d_2^u}{d_1^u}\mu\,,\qquad \left(\left(1+\frac{\nu D_v}{d_1^v}\right)I+2\pi\nu\mathcal{G}_{\omega_v}\right)\mathcal{A}^v=-\frac{\nu d_2^v}{d_1^v}\eta\,.
$$

Substituting into the intracellular equilibrium equations, we obtain a 2*m*-dimensional nonlinear algebraic system for *µ^j* and *η^j* , for *j* ∈ {**1**, . . . , *m*}, given by

$$
f(\mu_j,\eta_j)-\mathbf{e}_j^T\Theta_u\mu=0\,,\qquad g(\mu_j,\eta_j)-\mathbf{e}_j^T\Theta_v\eta=0\,,\quad\text{for}\quad j\in\{1,\ldots,m\}\,,
$$

with coupling matrices

$$
\Theta_{u} := 2\pi\nu D_u \frac{d_2^u}{d_1^u} \left[\left(1 + \frac{\nu D_u}{d_1^u} \right) I + 2\pi\nu \mathcal{G}_{\omega_u} \right]^{-1}, \ \Theta_{v} := 2\pi\nu D_v \frac{d_2^v}{d_1^v} \left[\left(1 + \frac{\nu D_v}{d_1^v} \right) I + 2\pi\nu \mathcal{G}_{\omega_v} \right]^{-1}
$$

Merlin Pelz Ph.D. candidate at the University of British Columbia

Again, for linear inhibitor dependence in $g(\mu, \eta) = g_1(\mu) - g_2\eta$, we simply obtain

$$
f(\mu_j, \mathbf{e}_j^T(g_2I + \Theta_v)^{-1}\mathbf{g}_1) - \mathbf{e}_j^T\Theta_u\mu = 0, \qquad j \in \{1,\ldots,m\}.
$$

- ► We now focus on cell arrangement for which $\mathbf{e} := (1, \dots, 1)^T$ is an eigenvector of $G_y \forall y \in \mathbb{R}$ and the eigenspace of G_y orthogonal to eigenvector of $\mathcal{G}_\omega \ \forall \ \omega > 0$ and the eigenspace of \mathcal{G}_ω orthogonal to **e** is independent of *ω*.
- **I** Then, with eigenvalues α_{μ} of Θ_{μ} and α_{ν} of Θ_{ν} to **e**, the symmetric equilibrium is recovered from

$$
f\left(\mu_c,\frac{g_1(\mu_c)}{g_2+\alpha_v}\right)-\alpha_u\mu_c=0\,.
$$

I Perturbing about it with perturbations $\tilde{\mu}$ and $\tilde{\eta}$ setting $\lambda = 0$,

$$
\begin{pmatrix} f_{\mu}^{c}I - \Theta_{u} & f_{\eta}^{c}I \\ g_{\mu}^{c}I & g_{\eta}^{c}I - \Theta_{v} \end{pmatrix} \begin{pmatrix} \tilde{\mu} \\ \tilde{\eta} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} ,
$$

letting us recover the bifurcation points

Figure: A schematic plot of a ring arrangement in the unit disk with two cells. The bifurcation parameter for symmetry-breaking is ρ , while the diffusivities satisfy $D_{\mu} = D_{\nu}$.

Consider this time intracellular tissue kinetics of the Gierer-Meinhardt model

$$
\dot{\mu}(t) = f(\mu, \eta) := \frac{\mu^2}{\eta}, \quad \dot{\eta}(t) = g(\mu, \eta) := \mu^2.
$$

The uncoupled equilibrium given by $\mu_e = 0$, and where η_e is an arbitrary constant, is non-hyberbolic in all directions.

[Motivation](#page-2-0) [1-D Setting](#page-10-0) [2-D Setting](#page-31-0) [Discussion & Next Steps](#page-42-0) [References](#page-55-0) [References](#page-55-0)

- \triangleright Decreasing cell separation decreases symmetry-breaking threshold ρ_p
- \triangleright There exists hysteresis for lower d_{μ} with bigger extent as D_{ν}/D_{μ} decreases

Figure: Left: 3-D Bifurcation diagram for $d_u = 0.08$ directly after hysteresis has emerged when decreasing from $d_u = 0.09$. Here the cell ring radius is $r = 0.5$. Right: The pitchfork bifurcation value of ρ increases rapidly as the ring radius r , and consequently the distance between the cells, increases. Here $d_u = 0.09$ (supercritical ρ_p case). Remaining parameters: *D*^{*u*} = *D*^{*v*} = 5*,* σ *^{<i>u*} = σ ^{*v*} = 0*.*6, and ε = 0*.*03.

Figure: PDE simulation results with FlexPDE [\[11\]](#page-56-3) for GM kinetics. Left: convergence to symmetric branch for $\rho = 5$ before supercritical pitchfork point $\rho_p \approx 9.79168$, for an initial condition close to the symmetric branch. Right: convergence to the asymmetric branch selected by eigenperturbation direction $\mathbf{q}_2 = (1, -1)^T$ for $\rho = 15$ and starting near symmetric branch.
Parameters: $D_{\nu} = D_{\nu} = 5$, $\sigma_{\nu} = 0.6$, $\sigma_{\nu} = 0.6$, $\sigma_{\nu} = 0.09$, $\epsilon = 0.03$ and $\epsilon = 0.5$ Parameters: $D_u = D_v = 5$, $\sigma_u = \sigma_v = 0.6$, $d_u = 0.09$, $\varepsilon = 0.03$ and $r = 0.5$.

Figure: Simulation results with FlexPDE [\[11\]](#page-56-3) for GM kinetics [\(34\)](#page-38-0) with two closely spaced cells centered on a ring of radius $r = 0.031$ and with minimum cell separation of 0.002. Left: convergence to a stable symmetric steady-state solution when $\rho = 3$. Right: convergence to a stable asymmetric steady-state solution for $\rho = 8$ when starting with a symmetric initial condition. Parameters: $D_{\mu} = 5$, $D_{\nu} = 1.5$, $\sigma_{\mu} = \sigma_{\nu} = 0.6$, $d_{\mu} = 0.08$ and $\varepsilon = 0.03$.

Discussion & Next steps

Merlin Pelz Ph.D. candidate at the University of British Columbia

[The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D](#page-0-0)

- \triangleright We derived NAS for all equilibria, equations determining pitchfork bifurcation points and GCEP for general perturbation growth rates *λ* for finite & periodic 1-D domain and finite no-flux bc 2-D domain
- \triangleright Space of symmetry-destabilizing perturbations spanned by the ones with $Re(\lambda) > 0$ anywhere on symmetric equilibrium branch
- \triangleright Needed for NAS was $g(\mu, \eta) = g_1(\mu) g_2\eta$ (Lengyel-Epstein?)
- \triangleright Collective behaviour that occurs for a microemulsion consisting of Belousov-Zhabotinsky chemical reactants confined within small aqueous droplets dispersed in oil [\[43\]](#page-63-2) ([\[9\]](#page-56-1) [\[5\]](#page-55-2))

- \triangleright We derived NAS for all equilibria, equations determining pitchfork bifurcation points and GCEP for general perturbation growth rates *λ* for finite & periodic 1-D domain and finite no-flux bc 2-D domain
- \triangleright Space of symmetry-destabilizing perturbations spanned by the ones with $\text{Re}(\lambda) > 0$ anywhere on symmetric equilibrium branch
- \triangleright Needed for NAS was *g*(*µ*, *η*) = *g*₁(*µ*) − *g*₂*η* (Lengyel-Epstein?)
- \triangleright Collective behaviour that occurs for a microemulsion consisting of Belousov-Zhabotinsky chemical reactants confined within small aqueous droplets dispersed in oil [\[43\]](#page-63-2) ([\[9\]](#page-56-1) [\[5\]](#page-55-2))

- \triangleright We derived NAS for all equilibria, equations determining pitchfork bifurcation points and GCEP for general perturbation growth rates *λ* for finite & periodic 1-D domain and finite no-flux bc 2-D domain
- \triangleright Space of symmetry-destabilizing perturbations spanned by the ones with $\text{Re}(\lambda) > 0$ anywhere on symmetric equilibrium branch

 \triangleright Needed for NAS was $g(\mu, \eta) = g_1(\mu) - g_2\eta$ (Lengyel-Epstein?)

 \triangleright Collective behaviour that occurs for a microemulsion consisting of Belousov-Zhabotinsky chemical reactants confined within small aqueous droplets dispersed in oil [\[43\]](#page-63-2) ([\[9\]](#page-56-1) [\[5\]](#page-55-2))

- \triangleright We derived NAS for all equilibria, equations determining pitchfork bifurcation points and GCEP for general perturbation growth rates *λ* for finite & periodic 1-D domain and finite no-flux bc 2-D domain
- \triangleright Space of symmetry-destabilizing perturbations spanned by the ones with $\text{Re}(\lambda) > 0$ anywhere on symmetric equilibrium branch

 \triangleright Needed for NAS was $g(\mu, \eta) = g_1(\mu) - g_2\eta$ (Lengyel-Epstein?)

 \triangleright Collective behaviour that occurs for a microemulsion consisting of Belousov-Zhabotinsky chemical reactants confined within small aqueous droplets dispersed in oil [\[43\]](#page-63-2) ([\[9\]](#page-56-1) [\[5\]](#page-55-2))

\blacktriangleright Amplitude equations remain to be derived as in [\[34\]](#page-61-1)

- \triangleright On \mathbb{R}^2 : small identical cells of centered at lattice points of arbitrary Bravais lattice (Floquet-Bloch theory, reduced-wave Bloch Green function [\[25\]](#page-59-1))
- \triangleright Developing extension of our asymptotic approach to treat closely-spaced cell configurations (biological tissues): extension of approach developed in [\[26\]](#page-59-2) to analyze the mean first passage time for a cluster of small traps may be fruitful
- \triangleright 1-D setting: geometric graphs with diffusion on edges (e.g., [\[3\]](#page-55-4))

- \blacktriangleright Amplitude equations remain to be derived as in [\[34\]](#page-61-1)
- \triangleright On \mathbb{R}^2 : small identical cells of centered at lattice points of arbitrary Bravais lattice (Floquet-Bloch theory, reduced-wave Bloch Green function [\[25\]](#page-59-1))
- \triangleright Developing extension of our asymptotic approach to treat closely-spaced cell configurations (biological tissues): extension of approach developed in [\[26\]](#page-59-2) to analyze the mean first passage time for a cluster of small traps may be fruitful
- \triangleright 1-D setting: geometric graphs with diffusion on edges (e.g., [\[3\]](#page-55-4))

- \blacktriangleright Amplitude equations remain to be derived as in [\[34\]](#page-61-1)
- \triangleright On \mathbb{R}^2 : small identical cells of centered at lattice points of arbitrary Bravais lattice (Floquet-Bloch theory, reduced-wave Bloch Green function [\[25\]](#page-59-1))
- \triangleright Developing extension of our asymptotic approach to treat closely-spaced cell configurations (biological tissues): extension of approach developed in [\[26\]](#page-59-2) to analyze the mean first passage time for a cluster of small traps may be fruitful
- \triangleright 1-D setting: geometric graphs with diffusion on edges (e.g., [\[3\]](#page-55-4))

- \blacktriangleright Amplitude equations remain to be derived as in [\[34\]](#page-61-1)
- \triangleright On \mathbb{R}^2 : small identical cells of centered at lattice points of arbitrary Bravais lattice (Floquet-Bloch theory, reduced-wave Bloch Green function [\[25\]](#page-59-1))
- \triangleright Developing extension of our asymptotic approach to treat closely-spaced cell configurations (biological tissues): extension of approach developed in [\[26\]](#page-59-2) to analyze the mean first passage time for a cluster of small traps may be fruitful
- \blacktriangleright 1-D setting: geometric graphs with diffusion on edges (e.g., [\[3\]](#page-55-4))

[Motivation](#page-2-0) [1-D Setting](#page-10-0) [2-D Setting](#page-31-0) 2-D Setting **[Discussion & Next Steps](#page-42-0)** [References](#page-55-0) References

 \blacktriangleright Perturbing about stable limit cycle in contrast to uniform or symmetric steady-state. Time-dependence of limit cycle will lead to time-dependent Green matrices

- [Motivation](#page-2-0) [1-D Setting](#page-10-0) [2-D Setting](#page-31-0) 2-D Setting **[Discussion & Next Steps](#page-42-0)** [References](#page-55-0) References
	- \triangleright Chemical reactions happen randomly [\[42\]](#page-63-4) [\[47\]](#page-64-2) [\[23\]](#page-59-3). Assuming they are Markovian, analyzing their effect could yield novel behaviour [\[10\]](#page-56-4)

Figure: Simulations of RM kinetics for two cells on periodic 1-D domain. RM kinetics are randomly nonlinearly perturbed with square rooted propensities multiplied by independent Wiener processes.

[The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D](#page-0-0)

- \triangleright Notion of stochastic P-bifurcation point versus D-bifurcation point may be interesting [\[1\]](#page-55-5)
- I Approximate Fokker-Planck equation for stationary distribution (using bulk equilibrium):

$$
\begin{array}{lcl} 0 & = & \partial_{t}\rho_{s}(\nu) & = & \nabla \cdot ((-F(\nu)+C\nu)\rho_{s}+\frac{1}{2}\nabla \cdot(D(\nu)\rho_{s}) \\ & = & -\sum_{l=1}^{2n}\partial_{\nu_{l}}(\mathbf{e}_{l}^{T}(F(\nu)-C\nu)\rho_{s})+\frac{1}{2}\sum_{l=1}^{2n}\partial_{\nu_{l}}^{2}(\mathbf{e}_{l}^{T}D\mathbf{e}_{l}\rho_{s}). \end{array}
$$

supplied with the mass-conserving reflecting boundary condition **j** ⋅ **n** = 0 at zero boundaries for which $\exists l \in \{1, ..., 2n\}$: $v_l = 0$ [\[24\]](#page-59-4) [\[35\]](#page-61-2). Here **j** is the flux

$$
\mathbf{j} = (\mathbf{F}(\nu) - C\nu)\mathbf{\rho}_s - \frac{1}{2}(\partial_{\nu_1}(\mathbf{e}_1^T D \mathbf{e}_1 \mathbf{\rho}_s), \dots, \partial_{\nu_{2n}}(\mathbf{e}_{2n}^T D \mathbf{e}_{2n} \mathbf{\rho}_s))^T.
$$

Questions? ©

Merlin Pelz Ph.D. candidate at the University of British Columbia

[The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D](#page-0-0)

References I

- [1] Ludwig Arnold. "Random dynamical systems". In: *Dynamical systems* (1995), pp. 1–43.
- [2] R. E. Baker, E. A. Gaffney, and P. K. Maini. "Partial differential equations for self-organization in cellular and developmental biology". In: *Nonlinearity* 21.11 (2008), R251.
- [3] C. Besse and G. Faye. "Dynamics of epidemic spreading on graphs". In: *J. Math. Bio.* 82.6 (2021), pp. 1–52.
- [4] J. Bezanson et al. "Julia: A fast dynamic language for technical computing". In: *arXiv preprint arXiv:1209.5145* (2012).
- [5] M. A. Budroni et al. "Membrane structure drives synchronization patterns in arrays of diffusively coupled self-oscillating droplets". In: *J. Phys. Chem. Lett* 11.6 (2020), pp. 2014–2020.

References II

- [6] A. Dhooge, W. Govaerts, and Y. A Kuznetsov. "MatCont: a MATLAB package for numerical bifurcation analysis of ODEs". In: *ACM Trans. Math. Software (TOMS)* 29.2 (2003), pp. 141–164.
- [7] L. Diambra et al. "Cooperativity to increase Turing pattern space for synthetic biology". In: *AVS Synthetic Biology* 4 (2015), pp. 177–186.
- [8] X. Diego et al. "Key features of Turing systems are determined purely by network topology". In: *Phys. Rev. X* 8 (2018), p. 021071.
- [9] I. Epstein and B. Xu. "Reaction-diffusion processes at the nano- and microscales". In: *Nature Technology* 11 (2016), pp. 312–319.
- [10] R. Erban and J. Chapman. *Stochastic modeling of reaction-diffusion processes*. Cambridge Texts in Applied Mathematics, Cambridge U. Press, 2020, p. 380.
- [11] PDE FlexPDE. "Solutions inc". In: *URL http://www. pdesolutions. com* (2015).

References III

- [12] A. Gierer. "Generation of biological patterns and form: some physical, mathematical, and logical aspects". In: *Progress in biophysics and molecular biology* 37 (1981), pp. 1–47.
- [13] A. Gierer and H. Meinhardt. "A theory of biological pattern formation". In: *Kybernetik* 12.1 (1972), pp. 30–39.
- [14] D. Gomez et al. "Pattern forming systems coupling linear bulk diffusion to dynamically active membranes or cells". In: *Phil. Trans. Roy. Soc. A.* 379 (2021), p. 20200276.
- [15] A. Gomez-Marin, J. Garcia-Ojalvo, and J. M. Sancho. "Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling". In: *Phys. Rev. Lett.* 98 (16 2007), p. 168303.
- [16] J. Gou and M. J. Ward. "An asymptotic analysis of a 2-D model of dynamically active compartments coupled by bulk diffusion". In: *J. Nonlin. Sci.* 26.4 (2016), pp. 979–1029.

References IV

- [17] J. Gou and M. J. Ward. "Oscillatory dynamics for a coupled membrane-bulk diffusion model with Fitzhugh-Nagumo kinetics". In: *SIAM J. Appl. Math.* 76.2 (2016), pp. 776–804.
- [18] J. Gou et al. "A theory of synchrony by coupling through a diffusive chemical signal". In: *Physica D* 339 (2017), pp. 1–17.
- [19] J. Gou et al. "Synchronized oscillatory dynamics for a 1-D model of membrane kinetics coupled by linear bulk diffusion". In: *SIAM J. Appl. Dyn. Sys.* 14.4 (2015), pp. 2096–2137.
- [20] P. Haas and R. Goldstein. "Turing's diffusive threshold in random reaction-diffusion systems". In: *Phys. Rev. Lett.* 126 (2021), p. 238101.
- [21] J. Halatek, F. Brauns, and E. Frey. "Self-organization principles of intracellular pattern formation". In: *Phil. Trans. R. Soc. B* 373.1747 (2018), p. 20170107.

References V

- [22] J. Halatek and E. Frey. "Rethinking pattern formation in reaction–diffusion systems". In: *Nature Physics* 14.5 (2018), p. 507.
- [23] Desmond J Higham. "Modeling and simulating chemical reactions". In: *SIAM review* 50.2 (2008), pp. 347–368.
- [24] Miranda Holmes-Cerfon. *Applied Stochastic Analysis*. In preparation.
- [25] S. Iyaniwura, J. Gou, and M. J. Ward. "Synchronous oscillations for a coupled cell-bulk PDE-ODE model with localized cells on \mathbb{R}^{2} ". In: *J*. *Eng. Math.* 127.18 (2021), 24 pp.
- [26] S. Iyaniwura and M. J. Ward. "Asymptotic analysis for the mean first passage time in finite or spatially periodic 2-D domains with a cluster of small traps". In: *ANZIAM* 63.1 (2021), pp. 1–22.

References VI

- [27] S. Iyaniwura and M. J. Ward. "Synchrony and oscillatory dynamics for a 2-D PDE-ODE model of diffusion-mediated communication between small signalling compartments". In: *SIAM J. Appl. Dyn. Sys.* 20.1 (2021), pp. 438–499.
- [28] V. Klika et al. "The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organization". In: *Bull. Math. Bio.* 74 (2012), pp. 935–957.
- [29] K. Korvasová et al. "Investigating the Turing conditions for diffusion-driven instability in the presence of a binding immobile substrate". In: *J. Theor. Biol.* 367 (2015), pp. 286–295.
- [30] A. Landge et al. "Pattern formation mechanisms of self-organizing reaction-diffusion systems". In: *Dev Biol.* 460.1 (2020), pp. 2–11.
- [31] H. Levine and W. J. Rappel. "Membrane-bound Turing patterns". In: *Phys. Rev. E* 72 (6 2005), p. 061912.

References VII

- [32] L. Marcon et al. "High throughput mathematical analysis identifies Turing networks for patterning with equal diffusing signals". In: *eLife* 5 (2016), e14022.
- [33] P. Müller et al. "Morphogen transport". In: *Development* 140.8 (2013), pp. 1621–1639.
- [34] F. Paquin-Lefebvre, W. Nagata, and M. J. Ward. "Weakly nonlinear theory for oscillatory dynamics in a one-dimensional PDE-ODE model of membrane dynamics coupled by a bulk diffusion field". In: *SIAM J. Appl. Math.* 80.3 (2020), pp. 1520–1545.
- [35] Grigorios A Pavliotis. *Stochastic processes and applications: diffusion processes, the Fokker-Planck and Langevin equations*. Vol. 60. Springer, 2014.
- [36] J. Pearson. "Pattern formation in a (2+1)-species activator-inhibitor immobilizer system". In: *Physica A* 188.1-3 (1992), pp. 178–189.

References VIII

- [37] J. Pearson and W. Horsthemke. "Turing instabilities with nearly equal diffusivities". In: *J. Chem. Phys.* 90 (1989), p. 1588.
- [38] M. Pelz and M. J. Ward. "The emergence of spatial patterns for compartmental reaction kinetics coupled by two bulk diffusing species with comparable diffusivities". In: *Phil. Trans. Roy. Soc. A (38 pages, submitted)* (2022).
- [39] E. M. Rauch and M. M. Millonas. "The role of trans-membrane signal transduction in Turing-type cellular pattern formation". In: *J. Theor. Biol.* 226.4 (2004), pp. 401–407.
- [40] W. Ridgway, M. J. Ward, and B. T. Wetton. "Quorum-sensing induced transitions between bistable steady-states for a cell-bulk ODE-PDE model with Lux intracellular kinetics". In: *J. Math. Bio.* 84.1-2 (2021).

References IX

- [41] B. Sozen, J. Cornwall-Scoones, and M. Zernicka-Goetz. "The dynamics of morphogenesis in stem cell-based embryology: Novel insights for symmetry breaking". In: *Development* 474 (2021), pp. 82–90.
- [42] Peter S Swain and André Longtin. "Noise in genetic and neural networks". In: *Chaos: An Interdisciplinary Journal of Nonlinear Science* 16.2 (2006), p. 026101.
- [43] N. Tompkins et al. "Testing Turing's theory of morphogenesis in chemical cells". In: *PNAS* 111.12 (2014), pp. 4397–4402.
- [44] A. M. Turing. "The chemical basis of morphogenesis". In: *Phil. Trans. Roy. Soc., Series B* 237.641 (1952), pp. 37–72.
- [45] V. K. Vanag and I. R. Epstein. "Localized patterns in reaction-diffusion systems". In: *Chaos* 17.3 (2007), p. 037110.

References X

- [46] M. J. Ward. "Spots, traps, and patches: Asymptotic analysis of localized solutions to some linear and nonlinear diffusive processes". In: *Nonlinearity* 31.8 (2018), R189.
- [47] Darren J Wilkinson. "Stochastic modelling for quantitative description of heterogeneous biological systems". In: *Nature Reviews Genetics* 10.2 (2009), pp. 122–133.