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» 1952: Alan Turing and reaction-diffusion (RD) systems [44]:
owult,x) = DyAu+flu,v), (t,x) € (0,00) x (0, L)
ovit,x) = D,Av+9g(u,v)

with certain boundary conditions, e.g.,
Oyu(t,0) = 0 = 0,v(t,0), Ou(t L)=0=0yv(tL).

For D, = 0 = D,, one obtains the uniform (uncoupled) steady-state (Ue, Ve)
through f(Ue, Ve) = 0 = g(Ue, Ve); should be linearly stable.
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» 1952: Alan Turing and reaction-diffusion (RD) systems [44]:
owult,x) = DyAu+flu,v), (t,x) € (0,00) x (0, L)
ovit,x) = D,Av+glu,v)

with certain boundary conditions, e.g.,
Oyu(t,0) = 0 = 0,v(t,0), Ou(t L)=0=0yv(tL).

For D, = 0 = D,, one obtains the uniform (uncoupled) steady-state (Ug, Ve)
through f(Ue, Ve) = 0 = g(Ue, Ve); should be linearly stable.

With D, > 0, D, > 0, assuming separation of variables, general
eigenperturbations of the linearized system about (U, Ve) are

<§> e cos(xkm/L), ke No.

Searching for when Re(A) > 0, one concludes that

&auf(ue, Vo) +0,9(Ue, Vo) > 2 &det(Jo) with Jp := <

OuflUe, Vo)  0yf(Ue, Ve)
D, D,

0ug(Ue, Vo) 0y g(Ue, Ve)

has to be satisfied for exponentially growing non-uniform perturbations.
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Requirement of D, > D, unless finely tuned

When 1 reasonable, it has been shown (cf. [45], [46], [21], [22]) that
two-component RD systems admit wide range of spatially localized patterns
and instabilities that occur in "far-from-equilibrium" regime, far from where
a Turing linear stability analysis will provide any insight into
pattern-forming properties.

» FitzHugh-Nagumo neuronal kinetics, Brusselator and Gray-Scott

model (glycolysis cycle)[45][46],
» Intracellular pattern formation via Min protein system [21][22].

Merlin Pelz

The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D



Motivation 1-D Setting 2-D Setting Discussion & Next Steps

[e]e] Jele] 000000000000 0000000 00000000000 0000000

Requirement of D, > D, unless finely tuned

When 1 reasonable, it has been shown (cf. [45], [46], [21], [22]) that
two-component RD systems admit wide range of spatially localized patterns
and instabilities that occur in "far-from-equilibrium" regime, far from where
a Turing linear stability analysis will provide any insight into
pattern-forming properties.

» FitzHugh-Nagumo neuronal kinetics, Brusselator and Gray-Scott

model (glycolysis cycle)[45][46],

» Intracellular pattern formation via Min protein system [21][22].
However, often unrealistic in cell systems as signalling molecules diffuse on
comparable time scales

» Nodal/Lefty morphogen system patterns germ layers during early

embryogenesis [33] (activator Nodal has same local diffusivity as Lefty
but ~ 90% lower effective diffusivity; only this makes Turing theory
applicable)

» Scientists trying to make Turing instability range bigger by adding new

model features & fine tuning [7] [2]
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Work on overcoming the diffusivity ratio condition

» Fine-tuning allows for not vastly different diffusivities [37]: tuned
reaction kinetics lead to almost neutrally stable steady-state (has
evolution created organisms fine-tuned throughout yet?),

» Adding immobile species to system ("2+1") allows for equal
diffusivities [28] [29]: reaction kinetics everywhere? Also, can lead to
discontinuities,

» Incorporation of randomness in RD systems makes diffusivity ranges
for instability much wider [20]: no rigorous analytical theory yet and
continuous in space.
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Our approach

» Inspired by (active membrane)-(bulk diffusion field) articles (FN
kinetics 1-D [15], GM kinetics 2-D [31])

» We diffusively couple intra-compartmental reactions, all with two
species (one extrac. species: [19] [17] [18] [34] (1-D) [16] [27] [40]
[14] (2-D)) and build the corresponding theory,

» We show that the ratio of inhibitor membrane reaction rate to activator
membrane reaction rate is key bifurcation parameter p.
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Our approach

» Inspired by (active membrane)-(bulk diffusion field) articles (FN
kinetics 1-D [15], GM kinetics 2-D [31])

» We diffusively couple intra-compartmental reactions, all with two
species (one extrac. species: [19] [17] [18] [34] (1-D) [16] [27] [40]
[14] (2-D)) and build the corresponding theory,

» We show that the ratio of inhibitor membrane reaction rate to activator
membrane reaction rate is key bifurcation parameter p.
Possible scenarios:

» Collective behaviour occurring for microemulsion consisting of
Belousov-Zhabotinsky (BZ) chemical reactants that are confined within
small aqueous droplets that are dispersed in oil [43] (see also [9], [5])

» Membrane attachment mechanism, which reduces the effective
diffusivity of one of the morphogens; referred to in [33] as a
binding-mediated hindrance diffusion process.
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1-D setting: atomic domain
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Consider intra-compartmental reaction kinetics coupled through a linear
diffusion field on (0, L) with two compartments on the boundary:
bulk owu(t,x) = Dy O —oyu, x €(0,L)
ov(t,x) = D, OV —oyv, x¢c(0,L)

(D, 0xu(t,0) = B, (u(t,0) — py(t)) (boundary conditions)
fuxes ) D,d,v(t,0) =B, (v(t,0) — n(t))
—Dyoxu(t, L) = By (u(t, L) — pa(t))
[ —=Dvoxv(t, L) = By (v(t, L) — m2(t))
(11 = f(q,m1) + D, 0xu(t,0) (reaction kinetics at x = 0)
. i =g, m) + Dy 0xv(t,0)
intracellular 3 . o
1o = f(uo, no) — D, Oxu(t, L) (reaction kinetics at x = L)
L2 = 9(p2, m2) — Dy, Oxv(t, L)

with, e.g., identical intracellular FN kinetics (g > 0,z > 0,6 > 0) [15]:
flm) = p-qu-2°+4-n,
glwm) = dSpz-on.
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Important properties of the compartmental-reaction diffusion system:

» Does not admit nontrivial spatially uniform state
= No Turing analysis possible

» Instead, when compartments are identical, we can construct spatially
non-uniform steady-state solution that is symmetric. This solution is the
base-state for our analysis.

> We are interested in bifurcations from base state leading to asymmetric
structures
=> More sophisticated steady-state construction and linear stability
analysis needed

» Emergence of such asymmetry is important in the sciences (e.g.,
embryogenesis [41])
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Solving for the global region equilibrium yields through the fluxes a
nonlinear algebraic system (NAS) for all coupled cellular equilibria:

0= <g(u?:nf)> B 5 <n$>
glpg,mz)) 2 -1 \n3
yvcosh(w,L) —1  cosh(w,L) — vy,

cosh(wyL) — vy, 7ycosh(w,L) - 1>

where A= <
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Solving for the global region equilibrium yields through the fluxes a
nonlinear algebraic system (NAS) for all coupled cellular equilibria:

0= <g(ue,n$)> B ;(n?)
g3, m3))  y2-1"\n3

~._ [7vcosh(wyL) =1 cosh(w,L) — v
where A := < cosh(wyL) — 9, 7vy,cosh(w,L) —1
and
flpg,m)) 272 —-1"\u3
. [7ucosh(wyL) =1  cosh(wyl) — 7y
where B~ < cosh(wyl) — 7,  yycosh(w,Ll) — 1

with v := cosh(wgl) + imi sinh(wgL) and freq. wo := voo/Do,

Dowr

leads with linear inhibitor-dependence in g(u1, ) = g1 (1) — gon to

f(u$,(1,o)(7§[1z\+gzl)“1(g1(u$),g1(u§))7) B B(pf>=0 0
f(ug, (0,1)( 25 A+ &) (o) g E)T) ) 75 -1 \mg)
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Now the symmetric equilibrium (18, pS)7™ = pe(1,1)7 is easily obtained
through

g (ﬂe)) _ Bu
2

f(ue,
(He a;

1 bipe =0,
u
and, perturbing about it by ¢ using (1) gives, to first order,

Jin Ji2 Bu
- ———B¢p =0.
<J21 J22> ¢ y2 —1 ¢

Since the coupling matrices A and B are circulant, the eigenperturbations are
¢ =c(1,1)Tand ¢ = c(1, —=1)7, |c| « 1, hence, we are landing on the
bifurcation point (16, pp, Z) solving

Opflpe, Lke )+6 fie, g‘a1 )g;;ﬁle) —%m = 0  (symmetric)
Oy f (e, ) + O, f(1e 913;:9))9’;;219) - ;g"i—bz = 0  (asymmetric)

with bifurcation parameter p = 8, /3, and possibly, in case of FN kinetics,
another one (here 2).
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Solution continuation from the bifurcation point with MatCont [6] gives

*  zZp2
2.4 2.4
22
3 23 p,/
X

: 2.2 \
18 .
16 25

2
44 46 48 5 5.2 75 80 85 90 2
z p He2

Figure: Left: p§ versus z showing that asymmetric equilibria exist inside a pitchfork
bubble delimited by zp1 ~ 4.48430 and zp, ~ 5.07294 when p = B,/B, = 80.
Right: For z = zp 1, there is a symmetry-breaking bifurcation of the symmetric
steady-state as p increases past the critical value p, =~ 80. Parameters:
D,=1,D,=3,0,=0,=1,€=07,g=1,L=1,and B, = 0.1.
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A partially overlapping Hopf bubble also exists, found by
» introducing into PDE-ODE system the general perturbations
ult, x) = ue(x) + d(x)e*, v(t, X) = Ve(x) + Y(x)eM, pylt) =
He + &€M, 1 = ne + €M, where |¢| < 1,|¥] < 1,]£j] < 1 and
|&] < 1forje {1,2},
> linearizing to obtain globally coupled matrix eigenvalue problem
(GCEP) det(JL(A)) = 0 for the (complex) growth rates A.

Pitchfork (zp1, zp2) & Hopf (zn1, zn2) bifurcation points

51
—@- za(p) e
O zalp) ==
S0 1O ) PP o
- Q- 2:0p) e
/"/
49t -
r’/
N 48
47t
B e el
a6 et
45t
20 50 60 70 80
o] 18/54

Merlin Pelz

The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D



n;

0000000000 0e0000000

v(t, x)

100 150
t

Close to equilibrium ve(x)

u(0, x) and v(0, x)

Figure: For initial condition near unstable symmetric branch, and for z ~ 4.52211
and p = 80, we predict that asymmetric solution branch is linearly stable since
Zp1 < Z < Zy1. Numerically solved with our CN-RK4 IMEX method in Julia [4]
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1-D setting: cells on ring
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The system now reads

(0,00), x € (0, NL\UL1 {x:}
(0,00), x € (0, nL\UiL; {x:}
u(t,0) = u(t,nL), v(t,0) = v(t, nL) (periodic BC)
Oyu(t,0) = d,u(t,nL), 0Oxv(t,0) = dyv(t nL)

bulk {a,u = D, O U — oyUu,

te
OV = D, OV — 0oyV, te

bulk boundary {

[DydxUl|x-x; = Bu (ult, X)) — p(t)) (cell jump conditions)
[DyoxV]lx=y; = By (v(t, X)) — m(t))

By = f(py, m) + [Dydy ]| x=, (reaction kinetics at X = X))
M = gk, M) + [Dy0xV]|x=x; ,

reaction fluxes {

compartments ‘|:

forj = {1,..., n}. Here for any function % we have defined
[Fllx=x 1= F(XT) = F(X7).

o
o

0 L L 37 ( 1)1: nL
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NAS for all equilibria similarly obtained as above, with

glp,m) = gi(n) — gom,

<f<u$,<1,0>A—1<g1 (19). 9 (us)m) B g <u$> 0
s, (0, VA (g1 (x5). @1 (uE)T)) ~ 7% —4° \ug) ="

where the coupling matrices A and B are now

By ~_ [2y,cosh(w,L) —4 4cosh(w,L) -2y,
A= y2 — 4A %!, A 4 cosh(wyL) — 27, 27y,cosh(w,L)—-4)"’

v
<2;yu cosh(wyL) —4 4cosh(wyl) — 27u>

B: 4 cosh(wyl) — 279, 27y,cosh(w,L) —4

I
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Perturbing about the symmetric equilibrium with

ult, x) = ue(x) + d(x)e*, v(t, X) = Ve(x) + Y(x)eM, pyt) =

He + &M, = ne + €M, where |¢] < 1, Y] < 1,]&]| < 1and |¢] « 1
forj € {1,2], we solve on fundamental domain [0, L] with O ~ L and a
Floquet-type boundary condition:

wd —QBd =0,  xe(0,L\{3}
oulk {Xxw—avw—o, x e 0.\

bk boundary |90 = 20, 0 = Z(L)  (Floquet BC)
0xp(0) = Zoxd(L), 0xP(0) = Zox¥(L)
. [Duddll,ot = Bu (d(5) — &) (cell jump conditions)
reaction fluxes 2 i
(Dolls =B (W) —¢)
AE = 0,fe& + 0yfeC + [D,0x 9] [X (reaction kinetics at X = é)

intracellular
AL = 0,96E + 0,96C + [D,06xY)] IXZ? .

Hence, using translational invariance,
Z"=1 & Z=e"*" for ke {0,.,n—1}.
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With Q4 = /0 + 00)/Dy, @y = \/( + 0,)/Dy and Go, 7 (L/2),

Go,,z (L/2) of quasi-periodic Green function,

» GCEP det(Mz, (1)) = 0 for each perturbation mode Z (compare with
eigenperturbations)

» Special case A = 0

24/54
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With Q4 = /0 + 00)/Dy, @y = \/( + 0,)/Dy and Go, 7 (L/2),

Go,,z (L/2) of quasi-periodic Green function,

» GCEP det(Mz, (1)) = 0 for each perturbation mode Z (compare with
eigenperturbations)

» Special case A = 0

Now for generic intracellular reaction (Rauch-Millonas) kinetics to universal
signal transduction system proposed in [39]

o o aip agpun
po= fl,m) = cu — quo + o7y — S5
o= g :=c +wp-qun,

we identify gq(u) = ¢, + Wy and go = qy.

Merlin Pelz
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Figure: Bifurcation diagrams for Rauch-Millonas kinetics (24) with n = 2 computed from (22)
using MatCont [6]. Left: Plot of pf showing that asymmetric steady-states occur inside a
degenerate pitchfork bubble bounded by Wf " % 6.34518 and W\‘,D 2 % 7.64062 when

p = Bv/Bu = 7. Right: Supercritical pitchfork bifurcation in p from the symmetric branch
occurs when W, = w,, "~ Stable asymmetric branches occur past this threshold in p.
Parameters: Dy, = Dy = 1,04 = oy, = 0.01,¢, = ¢, = 1,q, = 1/100,qy = 7,af =
600,a3 = 6, y{ = 100,75 = 1/10,and B, = 0.3.
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u(t, x)
A H1
21 4 v —u2
20 o 3
B
19
1
18
0
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t
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t
Close to equilibrium ue(x)

&

g

u(0, x) and v(0, x)
&
= Ue(

g

00 05 10 15 20 00 05 10 15 20

Figure: Rauch-Millonas kinetics with n = 2. For an initial condition near the unstable

symmetric branch, and for p = 15 and wy, = W‘I,D '2, the full time-dependent solution computed
using the BE-RK4-IMEX scheme of [38] converges to a stable asymmetric steady-state.
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2-D Setting

Instead of an infinite 1-D consideration, it may be a step towards reality to
consider a finite domain in 2-D.

R2

Opu = 0= 0,v

Ou = Dy Au — o,u
0w = Dy,Av — 0,0
u

5 1,j+1

— —
M —>e— U U == fj+1
Nj —e—= U U —ee— Njt1
— —
& jia

28/54
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Instead of an infinite 1-D consideration, it may be a step towards reality to
consider a finite domain in 2-D.

oiu = DyAU —oyu, X€ Q\Uj”;1 Q.

bulk ov =D/Av —o,v, xeAULi ¥,
Opu =0pv =0, X € 0Q2,
D,onu = d'u—d¥p;, xe o,
reaction fluxes &ZuOnl dr'u — dopy €0
eDyonv = dfv—dim;, x¢€ 0%,
W ) + 1 dfu - d¥p;) dS
compartments at (i) + 2 fm’( ! 21)

an;

o = 9, m) + %fagj(drv —azn;) dS,

forj € {1,..., m}, with outward normal vectors n; to ;.

Merlin Pelz
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In the /" local region, within O(g) of boundary of j™ cell,
> local coordinates y; = €' (X — X;), pj := |Yj]
» local variables U;(x) = Uj(ey; + X)), and Vj(x) = Vj(ey; + X))
| 4

AU = 0 AV, = 0 for p; > 1
D,opU; = d{fU—dsp; and D,y V, ayVi—din; onp; =1

I

» radially symmetric solutions to these problems are
Uilpj) = A Inpj+ (DUA r ). VYile) - A/ npj+—y (DVA + )

forje {1,..., m}, where A]‘-’ and A/‘-’ forje {1,..., m} are constants to be determined

P substituting into the steady-state problem

fluj, mj)+27D, A =0,  glw, m)+2xD, A/ =0,  je{1,....,m}.

Merlin Pelz
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In the global region
AU-w2U=0, XEQ\{X1,...,Xn}; o,U=0, xeoQ;

u

A
U~ Allog |x - x,[+—+ 1(DuA]‘-’+d2“;1,-), as X—-X;,je{l,....m},

dU

where v:= —1/loge « 1 and wy := Vo, /D,. Similarly, for V.
» With the reduced-wave Green function G, solving
AG, — 0w?G, = —6(X — X)), Xe; onG, =0, xe0Q;
1
G, ~ —Eloglx - Xj| + R,(X;) + o(1), as X — X;.

we get

m m
Ulx) = =27 " AYG, (X X)) , V(x) = =2 ) A G, (X; X))
i=1 i=1

Merlin Pelz
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2-D Setting
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The singularity behaviours of U, V, qu and G,,, directly yield linear
algebraic systems for A := (AY,...,A4)T and A" := (AY,...,AY)T,
given in matrix form by

vD vd“ D ol
<<1 + d1“u> I+27n)§wu> AY = du ) <<1 + d1vv> /+27T1)§wv> v = _T;n

Substituting into the intracellular equilibrium equations, we obtain a
2m-dimensional nonlinear algebraic system for p1; and 7, for
je{1,...,m}, given by

fy,m)-e/@up =0, g, m)-e/On=0, for je{i,..,m},
with coupling matrices

vDy

vD,
+ o

df

-1 -1
Oy := 27tvDy Z” [( > I+ 27w§u,u] , ©y = 21D, Z" [( ) I+ 27n)§’w,,]

Merlin Pelz
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Again, for linear inhibitor dependence in g(i1, ) = g1 (1) — gom, we simply
obtain

f(p.ef(gel+0©,)"'g1) —e/@O,u=0, je{l,....m}.

» We now focus on cell arrangement for which e := (1,...,1)" is an

eigenvector of G,, V w > 0 and the eigenspace of G,, orthogonal to e is
independent of w.

» Then, with eigenvalues o, of ®, and a, of @, to e, the symmetric
equilibrium is recovered from

91 (1c)
f , — ] = =0.
<I»lc o + av> aype =0

» Perturbing about it with perturbations f1 and 7 setting A = 0,

fol-@,  fol \ (i) _ [0
gl g¢r-o,)\n) = o)

letting us recover the bifurcation points

Merlin Pelz
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2-D Setting

[e]e]e]e]e]e]e] ele]e)

m=2

d, = pd,
p>1,d, >0
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Figure: A schematic plot of a ring arrangement in the unit disk with two cells. The
bifurcation parameter for symmetry-breaking is p, while the diffusivities satisfy
D, = D,.

Consider this time intracellular tissue kinetics of the Gierer-Meinhardt model
2
. H ,
alt) = flp,m) := o n(t) = glu, m) := p2.

The uncoupled equilibrium given by p1e = 0, and where 7 is an arbitrary

constant, is non-hyberbolic in all directions. 34/54
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00000000800

» Decreasing cell separation decreases symmetry-breaking threshold pp
» There exists hysteresis for lower d, with bigger extent as D,/D,,

decreases
r-Dependence of pitchfork point
200
4
175
3 ’s
§ 2 ’s % 150
1 125
4
0 2
0 10 20 30 40 50 0 100

4 He2 r
Figure: Left: 3-D Bifurcation diagram for dy, = 0.08 directly after hysteresis has emerged
when decreasing from d, = 0.09. Here the cell ring radius is r = 0.5. Right: The pitchfork
bifurcation value of p increases rapidly as the ring radius r, and consequently the distance
between the cells, increases. Here d, = 0.09 (supercritical pp case). Remaining parameters:
Dy =D, =5,0,y = oy, = 0.6, and € = 0.03.
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Figure: PDE simulation results with FlexPDE [11] for GM kinetics. Left: convergence to
symmetric branch for p = 5 before supercritical pitchfork point pp =~ 9.79168, for an initial
condition close to the symmetric branch. Right: convergence to the asymmetric branch selected
by eigenperturbation direction gp = (1, —=1)7 for p = 15 and starting near symmetric branch.
Parameters: D, = Dy, = 5,0, = 0, = 0.6,d, = 0.09,& = 0.03and r = 0.5.
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Figure: Simulation results with FlexPDE [11] for GM kinetics (34) with two closely spaced
cells centered on a ring of radius r = 0.031 and with minimum cell separation of 0.002. Left:
convergence to a stable symmetric steady-state solution when p = 3. Right: convergence to a
stable asymmetric steady-state solution for p = 8 when starting with a symmetric initial
condition. Parameters: D, = 5, D, = 1.5, 0, = 0, = 0.6, d, = 0.08 and € = 0.03.
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» We derived NAS for all equilibria, equations determining pitchfork
bifurcation points and GCEP for general perturbation growth rates A for
finite & periodic 1-D domain and finite no-flux bc 2-D domain
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» We derived NAS for all equilibria, equations determining pitchfork
bifurcation points and GCEP for general perturbation growth rates A for
finite & periodic 1-D domain and finite no-flux bc 2-D domain

» Space of symmetry-destabilizing perturbations spanned by the ones
with Re(A) > 0 anywhere on symmetric equilibrium branch

39/54

Merlin Pelz

The Emergence of Spatial Patterns for -Ci C artments with Activator-Inhibitor King n 1-D and 2-D



Discussion & Next Steps
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» We derived NAS for all equilibria, equations determining pitchfork
bifurcation points and GCEP for general perturbation growth rates A for
finite & periodic 1-D domain and finite no-flux bc 2-D domain

» Space of symmetry-destabilizing perturbations spanned by the ones
with Re(A) > 0 anywhere on symmetric equilibrium branch

» Needed for NAS was g(ut, n) = g1() — gon (Lengyel-Epstein?)
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» We derived NAS for all equilibria, equations determining pitchfork
bifurcation points and GCEP for general perturbation growth rates A for
finite & periodic 1-D domain and finite no-flux bc 2-D domain

» Space of symmetry-destabilizing perturbations spanned by the ones
with Re(A) > 0 anywhere on symmetric equilibrium branch

» Needed for NAS was g(ut, n) = g1() — gon (Lengyel-Epstein?)

» Collective behaviour that occurs for a microemulsion consisting of
Belousov-Zhabotinsky chemical reactants confined within small
aqueous droplets dispersed in oil [43] ([9] [5])
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» Amplitude equations remain to be derived as in [34]

» On R2: small identical cells of centered at lattice points of arbitrary
Bravais lattice (Floquet-Bloch theory, reduced-wave Bloch Green
function [25])
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» Amplitude equations remain to be derived as in [34]

» On R2: small identical cells of centered at lattice points of arbitrary
Bravais lattice (Floquet-Bloch theory, reduced-wave Bloch Green
function [25])

» Developing extension of our asymptotic approach to treat
closely-spaced cell configurations (biological tissues): extension of
approach developed in [26] to analyze the mean first passage time for a
cluster of small traps may be fruitful
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[e]e] le]elele)

» Amplitude equations remain to be derived as in [34]

» On R2: small identical cells of centered at lattice points of arbitrary
Bravais lattice (Floquet-Bloch theory, reduced-wave Bloch Green
function [25])

» Developing extension of our asymptotic approach to treat
closely-spaced cell configurations (biological tissues): extension of
approach developed in [26] to analyze the mean first passage time for a
cluster of small traps may be fruitful

» 1-D setting: geometric graphs with diffusion on edges (e.g., [3])
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» Perturbing about stable limit cycle in contrast to uniform or symmetric
steady-state. Time-dependence of limit cycle will lead to
time-dependent Green matrices

Ne(Me)=Me-q(He-2)3+4 (single cell)

8 -
7 -
6 -
st
& Al —— 6=0.1, =05, z=35
O equilibrium
3t © one orbit
2 \
0 1 2 3 4

Merlin Pelz

The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D



Discussion & Next Steps

[e]e]ele] lele)

» Chemical reactions happen randomly [42] [47] [23]. Assuming they are
Markovian, analyzing their effect could yield novel behaviour [10]

Ha(t) & pa(t), p = 6.5, 1 realiz. Ha(t) & pa(t), p = 3.5, 20 realiz. Ha(t) & pa(t), p = 4.5, 20 realiz.
100

| —— paxis
100 —

L YT
LRIV (YA \H“”‘\W‘M

It
Hm‘U ‘J\‘

o
12

H(t)

ux(t) & uz(t) p =7.0, 1 realiz.

Py MM“V\I”H‘ s
S AP N " *ﬂw g

w(t)

Figure: Simulations of RM kinetics for two cells on periodic 1-D domain. RM
kinetics are randomly nonlinearly perturbed with square rooted propensities
multiplied by independent Wiener processes.
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0000000

» Notion of stochastic P-bifurcation point versus D-bifurcation point may
be interesting [1]
» Approximate Fokker-Planck equation for stationary distribution (using
bulk equilibrium):
0 = opshv) = V-(( F(v )+Cv)Ps+ 2V (D( )P: )
= _Z/=1 av/ € ( (v ) CV Ps 2 2[ 1 1,/ e/ De, ps)

supplied with the mass-conserving reflecting boundary condition
j - n = 0 at zero boundaries for which 3/ € {1,...,2n}: v, = 0 [24]
[35]. Here j is the flux

. 1
i =(F(v) —Cvlps - 5(0y, (e De1 ps), ..., Oy, (@F,D €20 ps)) T
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