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I 1952: Alan Turing and reaction-diffusion (RD) systems [44]:
∂tu(t , x ) = Du∆u + f (u, v ), (t , x ) ∈ (0,∞)× (0,L)
∂tv (t , x ) = Dv∆v + g(u, v )

with certain boundary conditions, e.g.,

∂xu(t ,0) = 0 = ∂xv (t ,0), ∂xu(t ,L) = 0 = ∂xv (t ,L).
For Du = 0 = Dv , one obtains the uniform (uncoupled) steady-state (ue, ve)
through f (ue, ve) = 0 = g(ue, ve); should be linearly stable.
With Du > 0,Dv > 0, assuming separation of variables, general
eigenperturbations of the linearized system about (ue, ve)T are(

ζ
η

)
eλt cos(xkπ/L), k ∈ N0.

Searching for when Re(λ) > 0, one concludes that

Dv

Du
∂u f (ue, ve)+∂v g(ue, ve) > 2

√
Dv

Du
det(J0) with J0 := (∂u f (ue, ve) ∂v f (ue, ve)

∂ug(ue, ve) ∂v g(ue, ve)
)

has to be satisfied for exponentially growing non-uniform perturbations.
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Requirement of Dv � Du unless finely tuned

When ↑ reasonable, it has been shown (cf. [45], [46], [21], [22]) that
two-component RD systems admit wide range of spatially localized patterns
and instabilities that occur in "far-from-equilibrium" regime, far from where
a Turing linear stability analysis will provide any insight into
pattern-forming properties.
I FitzHugh-Nagumo neuronal kinetics, Brusselator and Gray-Scott

model (glycolysis cycle)[45][46],
I Intracellular pattern formation via Min protein system [21][22].

However, often unrealistic in cell systems as signalling molecules diffuse on
comparable time scales
I Nodal/Lefty morphogen system patterns germ layers during early

embryogenesis [33] (activator Nodal has same local diffusivity as Lefty
but ∼ 90% lower effective diffusivity; only this makes Turing theory
applicable)

I Scientists trying to make Turing instability range bigger by adding new
model features & fine tuning [7] [2]

Merlin Pelz Ph.D. candidate at the University of British Columbia

The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D



5/54

Motivation 1-D Setting 2-D Setting Discussion & Next Steps References References

Requirement of Dv � Du unless finely tuned

When ↑ reasonable, it has been shown (cf. [45], [46], [21], [22]) that
two-component RD systems admit wide range of spatially localized patterns
and instabilities that occur in "far-from-equilibrium" regime, far from where
a Turing linear stability analysis will provide any insight into
pattern-forming properties.
I FitzHugh-Nagumo neuronal kinetics, Brusselator and Gray-Scott

model (glycolysis cycle)[45][46],
I Intracellular pattern formation via Min protein system [21][22].

However, often unrealistic in cell systems as signalling molecules diffuse on
comparable time scales
I Nodal/Lefty morphogen system patterns germ layers during early

embryogenesis [33] (activator Nodal has same local diffusivity as Lefty
but ∼ 90% lower effective diffusivity; only this makes Turing theory
applicable)

I Scientists trying to make Turing instability range bigger by adding new
model features & fine tuning [7] [2]

Merlin Pelz Ph.D. candidate at the University of British Columbia

The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D



6/54

Motivation 1-D Setting 2-D Setting Discussion & Next Steps References References

Work on overcoming the diffusivity ratio condition

I Fine-tuning allows for not vastly different diffusivities [37]: tuned
reaction kinetics lead to almost neutrally stable steady-state (has
evolution created organisms fine-tuned throughout yet?),

I Adding immobile species to system ("2+1") allows for equal
diffusivities [28] [29]: reaction kinetics everywhere? Also, can lead to
discontinuities,

I Incorporation of randomness in RD systems makes diffusivity ranges
for instability much wider [20]: no rigorous analytical theory yet and
continuous in space.
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Our approach

I Inspired by (active membrane)-(bulk diffusion field) articles (FN
kinetics 1-D [15], GM kinetics 2-D [31])

I We diffusively couple intra-compartmental reactions, all with two
species (one extrac. species: [19] [17] [18] [34] (1-D) [16] [27] [40]
[14] (2-D)) and build the corresponding theory,

I We show that the ratio of inhibitor membrane reaction rate to activator
membrane reaction rate is key bifurcation parameter ρ.

Possible scenarios:
I Collective behaviour occurring for microemulsion consisting of

Belousov-Zhabotinsky (BZ) chemical reactants that are confined within
small aqueous droplets that are dispersed in oil [43] (see also [9], [5])

I Membrane attachment mechanism, which reduces the effective
diffusivity of one of the morphogens; referred to in [33] as a
binding-mediated hindrance diffusion process.
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1-D setting: atomic domain
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Consider intra-compartmental reaction kinetics coupled through a linear
diffusion field on (0,L) with two compartments on the boundary:

bulk

{
∂tu(t , x ) = Du ∂xxu − σuu, x ∈ (0,L)
∂tv (t , x ) = Dv ∂xxv − σv v , x ∈ (0,L)

fluxes


Du∂xu(t ,0) = βu (u(t ,0)− µ1(t)) (boundary conditions)
Dv∂xv (t ,0) = βv (v (t ,0)− η1(t))
−Du∂xu(t ,L) = βu (u(t ,L)− µ2(t))
−Dv∂xv (t ,L) = βv (v (t ,L)− η2(t))

intracellular


µ̇1 = f (µ1, η1) + Du ∂xu(t ,0) (reaction kinetics at x = 0)
η̇1 = g(µ1, η1) + Dv ∂xv (t ,0)
µ̇2 = f (µ2, η2)− Du ∂xu(t ,L) (reaction kinetics at x = L)
η̇2 = g(µ2, η2)− Dv ∂xv (t ,L)

with, e.g., identical intracellular FN kinetics (q > 0, z > 0, δ > 0) [15]:

f (µ, η) := µ − q(µ − 2)3 + 4− η,
g(µ, η) := δµz − δη.
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Important properties of the compartmental-reaction diffusion system:
I Does not admit nontrivial spatially uniform state
Ñ No Turing analysis possible

I Instead, when compartments are identical, we can construct spatially
non-uniform steady-state solution that is symmetric. This solution is the
base-state for our analysis.

I We are interested in bifurcations from base state leading to asymmetric
structures
ÑMore sophisticated steady-state construction and linear stability
analysis needed

I Emergence of such asymmetry is important in the sciences (e.g.,
embryogenesis [41])
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Solving for the global region equilibrium yields through the fluxes a
nonlinear algebraic system (NAS) for all coupled cellular equilibria:

0 = (g(µe
1 , ηe

1 )
g(µe

2 , ηe
2 ))− βv

γ2
v − 1

Ã
(
ηe

1
ηe

2

)
where Ã := (γv cosh(ωv L)− 1 cosh(ωv L)− γvcosh(ωv L)− γv γv cosh(ωv L)− 1

)
and

0 = (f (µe
1 , ηe

1 )
f (µe

2 , ηe
2 ))− βu

γ2
u − 1

B
(
µe

1
µe

2

)
where B := (γu cosh(ωuL)− 1 cosh(ωuL)− γucosh(ωuL)− γu γu cosh(ωuL)− 1

)
with γ� := cosh(ω�L) + β�

D�ω�
sinh(ω�L) and freq. ω� := √σ�/D�,

leads with linear inhibitor-dependence in g(µ, η) = g1(µ)− g2η to(
f (µe

1 , (1,0)( βv
γ2

v−1
Ã + g2I)−1(g1(µe

1),g1(µe
2))T )

f (µe
2 , (0,1)( βv

γ2
v−1

Ã + g2I)−1(g1(µe
1),g1(µe

2))T )
)
− βu

γ2
u − 1

B
(
µe

1
µe

2

) = 0 . (1)

Merlin Pelz Ph.D. candidate at the University of British Columbia

The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D



15/54

Motivation 1-D Setting 2-D Setting Discussion & Next Steps References References

Solving for the global region equilibrium yields through the fluxes a
nonlinear algebraic system (NAS) for all coupled cellular equilibria:

0 = (g(µe
1 , ηe

1 )
g(µe

2 , ηe
2 ))− βv

γ2
v − 1

Ã
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Now the symmetric equilibrium (µe
1 , µe

2)T = µe(1,1)T is easily obtained
through

f (µe,
g1(µe)

a1
)− βu

γ2
u − 1

b1µe = 0 ,

and, perturbing about it by φ using (1) gives, to first order,(
J11 J12
J21 J22

)
φ − βu

γ2
u − 1

Bφ = 0 .

Since the coupling matrices Ã and B are circulant, the eigenperturbations are
φ = c(1,1)T and φ = c(1, −1)T , |c| � 1, hence, we are landing on the
bifurcation point (µe, ρp, z) solving

∂µf (µe, g1(µe)
a1

) + ∂ηf (µe, g1(µe)
a1

) g′1(µe)
a1
− βu

γ2
u−1 b1 = 0 (symmetric)

∂µf (µe, g1(µe)
a1

) + ∂ηf (µe, g1(µe)
a1

) g′1(µe)
a2
− βu

γ2
u−1 b2 = 0 (asymmetric)

with bifurcation parameter ρ = βv /βu and possibly, in case of FN kinetics,
another one (here z).
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Solution continuation from the bifurcation point with MatCont [6] gives

Figure: Left: µe
1 versus z showing that asymmetric equilibria exist inside a pitchfork

bubble delimited by zP,1 ≈ 4.48430 and zP,2 ≈ 5.07294 when ρ = βv /βu = 80.
Right: For z = zP,1, there is a symmetry-breaking bifurcation of the symmetric
steady-state as ρ increases past the critical value ρp ≈ 80. Parameters:
Du = 1,Dv = 3, σu = σv = 1, ε = 0.7,q = 1,L = 1, and βu = 0.1.

Merlin Pelz Ph.D. candidate at the University of British Columbia

The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D



18/54

Motivation 1-D Setting 2-D Setting Discussion & Next Steps References References

A partially overlapping Hopf bubble also exists, found by
I introducing into PDE-ODE system the general perturbations

u(t , x ) = ue(x ) + φ(x )eλt , v (t , x ) = ve(x ) + ψ(x )eλt , µj (t) =
µe + ξjeλt , η = ηe + ζjeλt , where |φ| � 1, |ψ| � 1, |ξj | � 1 and
|ζj | � 1 for j ∈ {1,2},

I linearizing to obtain globally coupled matrix eigenvalue problem
(GCEP) det(M(λ)) = 0 for the (complex) growth rates λ.
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Figure: For initial condition near unstable symmetric branch, and for z ≈ 4.52211
and ρ = 80, we predict that asymmetric solution branch is linearly stable since
zP,1 < z < zH,1. Numerically solved with our CN-RK4 IMEX method in Julia [4].

.
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1-D setting: cells on ring
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The system now reads

bulk

{
∂tu = Du ∂xx u − σuu , t ∈ (0,∞) , x ∈ (0,nL)\⋃n

j=1{xj}
∂tv = Dv ∂xx v − σv v , t ∈ (0,∞), x ∈ (0,nL)\⋃n

j=1{xj}

bulk boundary

{
u(t ,0) = u(t ,nL) , v (t ,0) = v (t ,nL) (periodic BC)
∂x u(t ,0) = ∂x u(t ,nL) , ∂x v (t ,0) = ∂x v (t ,nL)

reaction fluxes

{[Du∂x u]|x=xj = βu (u(t , xj )− µj (t)) (cell jump conditions)[Dv∂x v ]|x=xj = βv (v (t , xj )− ηj (t))
compartments

{
µ̇j = f (µj , ηj ) + [Du∂x u]|x=xj (reaction kinetics at x = xj )
η̇j = g(µj , ηj ) + [Dv∂x v ]|x=xj ,

for j = {1, . . . ,n}. Here for any functionF we have defined[F]|x=x̃ := F(x̃+)−F(x̃−).
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NAS for all equilibria similarly obtained as above, with
g(µ, η) = g1(µ)− g2η,(

f (µe
1 , (1,0)A−1(g1(µe

1),g1(µe
2))T )

f (µe
2 , (0,1)A−1(g1(µe

1),g1(µe
2))T ))− βu

γ2
u − 4

B
(
µe

1
µe

2

) = 0 ,

where the coupling matrices A and B are now

A := βv

γ2
v − 4

Ã + g2I , Ã := (2γv cosh(ωv L)− 4 4 cosh(ωv L)− 2γv
4 cosh(ωv L)− 2γv 2γv cosh(ωv L)− 4

)
,

B := (2γu cosh(ωuL)− 4 4 cosh(ωuL)− 2γu
4 cosh(ωuL)− 2γu 2γu cosh(ωuL)− 4

)
.
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Perturbing about the symmetric equilibrium with
u(t , x ) = ue(x ) + φ(x )eλt , v (t , x ) = ve(x ) + ψ(x )eλt , µj (t) =
µe + ξjeλt , η = ηe + ζjeλt , where |φ| � 1, |ψ| � 1, |ξj | � 1 and |ζj | � 1
for j ∈ {1,2}, we solve on fundamental domain [0,L] with 0 ∼ L and a
Floquet-type boundary condition:

bulk

{
∂xxφ −Ω2

uφ = 0 , x ∈ (0,L)\{ L
2}

∂xxψ −Ω2
vψ = 0 , x ∈ (0,L)\{ L

2}

bulk boundary

{
φ(0) = Zφ(L), ψ(0) = Zψ(L) (Floquet BC)
∂xφ(0) = Z∂xφ(L) , ∂xψ(0) = Z∂xψ(L)

reaction fluxes

{[Du∂xφ]|x= L
2

= βu (φ( L
2 )− ξ) (cell jump conditions)[Dv∂xψ]|x= L

2
= βv (ψ( L

2 )− ζ)
intracellular

{
λξ = ∂µfeξ + ∂ηfeζ + [Du∂xφ]|x= L

2
(reaction kinetics at x = L

2 )
λζ = ∂µgeξ + ∂ηgeζ + [Dv∂xψ]|x= L

2
.

Hence, using translational invariance,

Z n = 1 ⇔ Zk = e2πik/n , for k ∈ {0, ...,n − 1} .
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With Ωu = √(λ + σu)/Du , Ωv = √(λ + σv )/Dv and GΩu ,Z (L/2),
GΩv ,Z (L/2) of quasi-periodic Green function,
I GCEP det(MZk (λ)) = 0 for each perturbation mode Zk (compare with

eigenperturbations)
I Special case λ = 0

Now for generic intracellular reaction (Rauch-Millonas) kinetics to universal
signal transduction system proposed in [39]

µ̇ = f (µ, η) := cu − quµ + αu
1µ

γu
1 +µ − αu

2µη
γu

2 +µ
η̇ = g(µ, η) := cv + wvµ − qvη ,

we identify g1(µ) = cv + wvµ and g2 = qv .

Merlin Pelz Ph.D. candidate at the University of British Columbia

The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D



24/54

Motivation 1-D Setting 2-D Setting Discussion & Next Steps References References

With Ωu = √(λ + σu)/Du , Ωv = √(λ + σv )/Dv and GΩu ,Z (L/2),
GΩv ,Z (L/2) of quasi-periodic Green function,
I GCEP det(MZk (λ)) = 0 for each perturbation mode Zk (compare with

eigenperturbations)
I Special case λ = 0

Now for generic intracellular reaction (Rauch-Millonas) kinetics to universal
signal transduction system proposed in [39]

µ̇ = f (µ, η) := cu − quµ + αu
1µ

γu
1 +µ − αu

2µη
γu

2 +µ
η̇ = g(µ, η) := cv + wvµ − qvη ,

we identify g1(µ) = cv + wvµ and g2 = qv .

Merlin Pelz Ph.D. candidate at the University of British Columbia

The Emergence of Spatial Patterns for Diffusion-Coupled Compartments with Activator-Inhibitor Kinetics in 1-D and 2-D



25/54

Motivation 1-D Setting 2-D Setting Discussion & Next Steps References References

Figure: Bifurcation diagrams for Rauch-Millonas kinetics (24) with n = 2 computed from (22)
using MatCont [6]. Left: Plot of µe

1 showing that asymmetric steady-states occur inside a
degenerate pitchfork bubble bounded by wP,1

v ≈ 6.34518 and wP,2
v ≈ 7.64062 when

ρ = βv /βu = 7. Right: Supercritical pitchfork bifurcation in ρ from the symmetric branch
occurs when wv = wP,2

v . Stable asymmetric branches occur past this threshold in ρ.
Parameters: Du = Dv = 1, σu = σv = 0.01, cu = cv = 1,qu = 1/100,qv = 7, αu

1 =
600, αu

2 = 6, γu
1 = 100, γu

2 = 1/10, and βu = 0.3.
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Figure: Rauch-Millonas kinetics with n = 2. For an initial condition near the unstable
symmetric branch, and for ρ = 15 and wv = wP,2

v , the full time-dependent solution computed
using the BE-RK4-IMEX scheme of [38] converges to a stable asymmetric steady-state.
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2-D setting
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Instead of an infinite 1-D consideration, it may be a step towards reality to
consider a finite domain in 2-D.
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Instead of an infinite 1-D consideration, it may be a step towards reality to
consider a finite domain in 2-D.

bulk


∂tu = Du∆u − σuu , x ∈ Ω\⋃m

j=1 Ωj ,
∂tv = Dv∆v − σv v , x ∈ Ω\⋃m

j=1 Ωj ,
∂ñu = ∂ñv = 0 , x ∈ ∂Ω ,

reaction fluxes

{
εDu∂nj u = du

1 u − du
2µj , x ∈ ∂Ωj ,

εDv∂nj v = dv
1 v − dv

2 ηj , x ∈ ∂Ωj ,

compartments

{ dµj
dt = f (µj , ηj ) + 1

ε
∫
∂Ωj

(du
1 u − du

2µj ) dS ,
dηj
dt = g(µj , ηj ) + 1

ε
∫
∂Ωj

(dv
1 v − dv

2 ηj ) dS ,

for j ∈ {1, . . . ,m}, with outward normal vectors nj to Ωj .
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In the j th local region, within O(ε) of boundary of j th cell,
I local coordinates yj = ε−1(x− xj ), pj := |yj |
I local variables Uj (x) = Uj (εyj + xj ), and Vj (x) = Vj (εyj + xj )
I

∆Uj = 0 ∆Vj = 0 for pj ≥ 1
Du ∂pj Uj = du

1 Uj − du
2 µj and Dv ∂pj Vj = dv

1 Vj − dv
2 ηj on pj = 1

I radially symmetric solutions to these problems are

Uj (pj ) = Au
j ln pj+ 1

du
1

(
Du Au

j + du
2 µj

)
, Vj (pj ) = Av

j ln pj+ 1
dv

1

(
Dv Av

j + dv
2 ηj

)
,

for j ∈ {1, . . . ,m}, where Au
j and Av

j for j ∈ {1, . . . ,m} are constants to be determined

I substituting into the steady-state problem

f (µj , ηj )+2πDu Au
j = 0 , g(µj , ηj )+2πDv Av

j = 0 , j ∈ {1, . . . ,m} .
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In the global region

∆U − ω2
u U = 0 , x ∈ Ω \ {x1, . . . ,xm} ; ∂nU = 0 , x ∈ ∂Ω ;

U ∼ Au
j log |x− xj |+ Au

j

ν + 1
du

1
(DuAu

j + du
2 µj ) , as x→ xj , j ∈ {1, . . . ,m} ,

where ν := −1/ logε � 1 and ωu := √σu/Du . Similarly, for V .
I With the reduced-wave Green function Gω solving

∆Gω − ω2Gω = −δ(x− xj ) , x ∈ Ω ; ∂nGω = 0 , x ∈ ∂Ω ;
Gω ∼ −

1
2π log |x− xj |+ Rω(xj ) + o(1) , as x→ xj .

we get

U(x) = −2π
m∑

i=1

Au
i Gωu (x; xi ) , V (x) = −2π

m∑
i=1

Av
i Gωv (x; xi ) .
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The singularity behaviours of U, V , Gωu and Gωv directly yield linear
algebraic systems forAu := (Au

1, . . . ,Au
m)T andAv := (Av

1, . . . ,Av
m)T ,

given in matrix form by((
1 + νDu

du
1

)
I + 2πνGωu

)
Au = −νdu

2
du

1
µ ,

((
1 + νDv

dv
1

)
I + 2πνGωv

)
Av = −νdv

2
dv

1
η .

Substituting into the intracellular equilibrium equations, we obtain a
2m-dimensional nonlinear algebraic system for µj and ηj , for
j ∈ {1, . . . ,m}, given by

f (µj , ηj )−eT
j Θuµ = 0 , g(µj , ηj )−eT

j Θvη = 0 , for j ∈ {1, . . . ,m} ,

with coupling matrices

Θu := 2πνDu
du

2
du

1

[(
1 + νDu

du
1

)
I + 2πνGωu

]−1
, Θv := 2πνDv

dv
2

dv
1

[(
1 + νDv

dv
1

)
I + 2πνGωv

]−1
.
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Again, for linear inhibitor dependence in g(µ, η) = g1(µ)− g2η, we simply
obtain

f
(
µj ,eT

j (g2I + Θv )−1g1
)
− eT

j Θuµ = 0 , j ∈ {1, . . . ,m} .

I We now focus on cell arrangement for which e := (1, . . . ,1)T is an
eigenvector of Gω ∀ω > 0 and the eigenspace of Gω orthogonal to e is
independent of ω.

I Then, with eigenvalues αu of Θu and αv of Θv to e, the symmetric
equilibrium is recovered from

f
(
µc ,

g1(µc)
g2 + αv

)
− αuµc = 0 .

I Perturbing about it with perturbations µ̃ and η̃ setting λ = 0,(
f c
µ I −Θu f c

η I
gc
µI gc

η I −Θv

)(
µ̃
η̃

) = (0
0

)
,

letting us recover the bifurcation points
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Figure: A schematic plot of a ring arrangement in the unit disk with two cells. The
bifurcation parameter for symmetry-breaking is ρ, while the diffusivities satisfy
Du = Dv .

Consider this time intracellular tissue kinetics of the Gierer-Meinhardt model

µ̇(t) = f (µ, η) := µ2

η , η̇(t) = g(µ, η) := µ2 .

The uncoupled equilibrium given by µe = 0, and where ηe is an arbitrary
constant, is non-hyberbolic in all directions.
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I Decreasing cell separation decreases symmetry-breaking threshold ρp

I There exists hysteresis for lower du with bigger extent as Dv /Du
decreases

Figure: Left: 3-D Bifurcation diagram for du = 0.08 directly after hysteresis has emerged
when decreasing from du = 0.09. Here the cell ring radius is r = 0.5. Right: The pitchfork
bifurcation value of ρ increases rapidly as the ring radius r , and consequently the distance
between the cells, increases. Here du = 0.09 (supercritical ρp case). Remaining parameters:
Du = Dv = 5, σu = σv = 0.6, and ε = 0.03.
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Figure: PDE simulation results with FlexPDE [11] for GM kinetics. Left: convergence to
symmetric branch for ρ = 5 before supercritical pitchfork point ρp ≈ 9.79168, for an initial
condition close to the symmetric branch. Right: convergence to the asymmetric branch selected
by eigenperturbation direction q2 = (1, −1)T for ρ = 15 and starting near symmetric branch.
Parameters: Du = Dv = 5, σu = σv = 0.6,du = 0.09, ε = 0.03 and r = 0.5.
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Figure: Simulation results with FlexPDE [11] for GM kinetics (34) with two closely spaced
cells centered on a ring of radius r = 0.031 and with minimum cell separation of 0.002. Left:
convergence to a stable symmetric steady-state solution when ρ = 3. Right: convergence to a
stable asymmetric steady-state solution for ρ = 8 when starting with a symmetric initial
condition. Parameters: Du = 5, Dv = 1.5, σu = σv = 0.6, du = 0.08 and ε = 0.03.
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Discussion & Next steps
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I We derived NAS for all equilibria, equations determining pitchfork
bifurcation points and GCEP for general perturbation growth rates λ for
finite & periodic 1-D domain and finite no-flux bc 2-D domain

I Space of symmetry-destabilizing perturbations spanned by the ones
with Re(λ) > 0 anywhere on symmetric equilibrium branch

I Needed for NAS was g(µ, η) = g1(µ)− g2η (Lengyel-Epstein?)
I Collective behaviour that occurs for a microemulsion consisting of

Belousov-Zhabotinsky chemical reactants confined within small
aqueous droplets dispersed in oil [43] ([9] [5])
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I Amplitude equations remain to be derived as in [34]
I On R2: small identical cells of centered at lattice points of arbitrary

Bravais lattice (Floquet-Bloch theory, reduced-wave Bloch Green
function [25])

I Developing extension of our asymptotic approach to treat
closely-spaced cell configurations (biological tissues): extension of
approach developed in [26] to analyze the mean first passage time for a
cluster of small traps may be fruitful

I 1-D setting: geometric graphs with diffusion on edges (e.g., [3])
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I Perturbing about stable limit cycle in contrast to uniform or symmetric
steady-state. Time-dependence of limit cycle will lead to
time-dependent Green matrices
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I Chemical reactions happen randomly [42] [47] [23]. Assuming they are
Markovian, analyzing their effect could yield novel behaviour [10]

Figure: Simulations of RM kinetics for two cells on periodic 1-D domain. RM
kinetics are randomly nonlinearly perturbed with square rooted propensities
multiplied by independent Wiener processes.
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I Notion of stochastic P-bifurcation point versus D-bifurcation point may
be interesting [1]

I Approximate Fokker-Planck equation for stationary distribution (using
bulk equilibrium):

0 = ∂t ps(ν) = ∇ · ((−F(ν) + Cν)ps + 1
2∇ · (D(ν)ps)= −

∑2n
l=1 ∂νl (eT

l (F(ν)− Cν)ps) + 1
2
∑2n

l=1 ∂2
νl

(eT
l D el ps).

supplied with the mass-conserving reflecting boundary condition
j · n = 0 at zero boundaries for which ∃ l ∈ {1, ...,2n} : νl = 0 [24]
[35]. Here j is the flux

j = (F(ν)− Cν)ps −
1
2

(∂ν1 (eT
1 D e1 ps), ..., ∂ν2n (eT

2nD e2n ps))T .
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Questions? ©
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