The eighth moment of the Riemann zeta function

Quanli Shen (joint work with Nathan Ng and Peng-Jie Wong)

Workshop on Moments of L-functions UNBC July 29, 2022

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

 299

∍

Table of Contents

1 [Moments of zeta](#page-2-0)

² [Additive divisor sums](#page-15-0)

3 [Statement of results](#page-23-0)

⁴ [Shifted moments of zeta](#page-27-0)

⁵ [Sketch of the proof](#page-45-0)

 299

∍

イロト イ押 トイヨ トイヨト

Table of Contents

1 [Moments of zeta](#page-2-0)

- [Additive divisor sums](#page-15-0)
- [Statement of results](#page-23-0)
- ⁴ [Shifted moments of zeta](#page-27-0)
- ⁵ [Sketch of the proof](#page-45-0)

メロトメ 伊 トメ ミトメ ミト

 299

∍

The 2k-th moments of $|\zeta(\frac{1}{2} + it)|$

 \bullet 2k-th moments:

$$
I_k(T)=\int_0^T |\zeta(\tfrac{1}{2}+it)|^{2k}\,dt.
$$

イロト イ部 トイミト イミト

É

The 2k-th moments of $|\zeta(\frac{1}{2} + it)|$

 \bullet 2*k*-th moments:

$$
I_k(\mathcal{T})=\int_0^{\mathcal{T}}|\zeta(\tfrac{1}{2}+it)|^{2k}\,dt.
$$

• Lindelöf hypothesis (LH):

$$
|\zeta(\tfrac{1}{2}+it)| \ll_{\varepsilon} (1+|t|)^{\varepsilon} \text{ for all } \varepsilon > 0.
$$

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

 299

目

The 2k-th moments of $|\zeta(\frac{1}{2} + it)|$

 \bullet 2*k*-th moments:

$$
I_k(\mathcal{T})=\int_0^{\mathcal{T}}|\zeta(\tfrac{1}{2}+it)|^{2k}\,dt.
$$

• Lindelöf hypothesis (LH):

$$
|\zeta(\tfrac{1}{2}+it)| \ll_{\varepsilon} (1+|t|)^{\varepsilon} \text{ for all } \varepsilon > 0.
$$

• The Lindelöf hypothesis is true if and only if

$$
I_k(T) \ll_{k,\varepsilon} T^{1+\varepsilon} \text{ for all } k \in \mathbb{N} \text{ and all } \varepsilon > 0.
$$

 $2Q$

∍

イロト イ押 トイヨ トイヨト

Bounds for $I_k(T)$

Theorem (Soundararajan, 2009)

The RH implies for any $k > 0$

 $I_k(T) \ll_k T(\log T)^{k^2+\varepsilon}.$

Theorem (Harper, 2013)

The RH implies for any $k > 0$

 $I_k(T) \ll_k T(\log T)^{k^2}$.

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

Bounds for $I_k(T)$

Theorem (Soundararajan, 2009)

The RH implies for any $k > 0$

 $I_k(T) \ll_k T(\log T)^{k^2+\varepsilon}.$

Theorem (Harper, 2013)

The RH implies for any $k > 0$

 $I_k(T) \ll_k T(\log T)^{k^2}$.

Theorem (Radziwill-Soundararajan, 2013, Heap-Soundararajan, 2020)

For any $k > 0$,

$$
I_k(T) \gg T(\log T)^{k^2}.
$$

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

 $2Q$

Asymtotics for $I_k(T)$

Theorem (Hardy-Littlewood, 1918)

$$
I_1(\mathcal{T}) = \int_0^{\mathcal{T}} |\zeta(\tfrac{1}{2} + it)|^2 dt \sim \mathcal{T} \log \mathcal{T}.
$$

メロトメ 伊 トメ ミトメ ミト

 299

э

Asymtotics for $I_k(T)$

Theorem (Hardy-Littlewood, 1918)

$$
I_1(\mathcal{T}) = \int_0^{\mathcal{T}} |\zeta(\tfrac{1}{2} + it)|^2 dt \sim \mathcal{T} \log \mathcal{T}.
$$

Theorem (Ingham, 1926)

$$
I_2(\mathcal{T}) = \int_0^{\mathcal{T}} |\zeta(\tfrac{1}{2} + it)|^4 dt \sim \frac{\mathcal{T}}{2\pi^2} (\log \mathcal{T})^4.
$$

メロトメ 伊 トメ ミトメ ミト

 299

∍

Higher moments $(2k = 6, 8)$

Conjecture (Folklore)

For $k > 0$,

$$
I_k(T) = \int_0^T |\zeta(\tfrac{1}{2} + it)|^{2k} dt \sim \frac{g_k}{(k^2)!} \cdot a_k \cdot \mathcal{T}(\log T)^{k^2},
$$

$$
\bullet \ \ a_k = \prod_p \left(1 - \frac{1}{p}\right)^{k^2} \sum_{m=0}^{\infty} \left(\frac{\Gamma(m+k)}{m!\Gamma(k)}\right)^2 p^{-m}.
$$

• Difficult to predict g_k .

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

 299

∍

Higher moments $(2k = 6, 8)$

Conjecture (Folklore)

For $k > 0$.

$$
I_k(T)=\int_0^T |\zeta(\tfrac{1}{2}+it)|^{2k}\,dt\sim \frac{g_k}{(k^2)!}\cdot a_k\cdot \mathcal{T}(\log T)^{k^2},
$$

$$
\bullet \ \mathsf{a}_k = \prod_{p} \left(1 - \frac{1}{p}\right)^{k^2} \sum_{m=0}^{\infty} \left(\frac{\Gamma(m+k)}{m!\Gamma(k)}\right)^2 p^{-m}.
$$

• Difficult to predict g_k .

Conjecture (Conrey and Ghosh, 1996)

$$
I_3(T) = \int_0^T |\zeta(\tfrac{1}{2} + it)|^6 dt \sim \frac{42}{9!} \cdot a_3 \cdot T(\log T)^9.
$$

Conjecture (Conrey and Gonek, 1998)

$$
I_4(\mathcal{T}) = \int_0^{\mathcal{T}} |\zeta(\tfrac{1}{2} + it)|^8 dt \sim \frac{24024}{16!} \cdot a_4 \cdot \mathcal{T}(\log \mathcal{T})^{16}.
$$

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

 $2Q$

Higher moments $(k \in \mathbb{N})$

Conjecture (Keating and Snaith, 1998) For $k \in \mathbb{N}$. $I_k(T) = \int_0^T |\zeta(\frac{1}{2} + it)|^{2k} dt \sim \frac{g_k}{(k^2)}$ $\frac{\mathcal{g}_k}{(k^2)!} \cdot a_k \cdot \mathcal{T}(\log \mathcal{T})^{k^2}$ where $g_k=(k^2)!$ ^{k−1}
∏ j=0 $\frac{j!}{(j+k)!}$.

イロト イ押 トイヨ トイヨト

Higher moments $(k \in \mathbb{N})$

Conjecture (Keating and Snaith, 1998) For $k \in \mathbb{N}$. $I_k(T) = \int_0^T |\zeta(\frac{1}{2} + it)|^{2k} dt \sim \frac{g_k}{(k^2)}$ $\frac{\mathcal{g}_k}{(k^2)!} \cdot a_k \cdot \mathcal{T}(\log \mathcal{T})^{k^2}$ where $g_k=(k^2)!$ ^{k−1}
∏ j=0 $\frac{j!}{(j+k)!}$.

Method: Random Matrices Theory.

イロト イ押 トイヨ トイヨト

Higher moments $(k \in \mathbb{N})$

Conjecture (Keating and Snaith, 1998)

For $k \in \mathbb{N}$.

$$
I_k(T)=\int_0^T |\zeta(\tfrac{1}{2}+it)|^{2k} dt \sim \frac{g_k}{(k^2)!} \cdot a_k \cdot T(\log T)^{k^2}
$$

where

$$
g_k = (k^2)! \prod_{j=0}^{k-1} \frac{j!}{(j+k)!}.
$$

- Method: Random Matrices Theory.
- Conrey, Farmer, Keating, Rubinstein and Snaith (2005) obtained the conjecture with full main terms. "Recipe" method.
- Diaconu, Goldfeld and Hoffstein (2003) also made the conjecture. Multiple Dirichlet **Series**

 Ω

イロト イ押 トイヨ トイヨ)

Table of Contents

[Moments of zeta](#page-2-0)

² [Additive divisor sums](#page-15-0)

[Statement of results](#page-23-0)

⁴ [Shifted moments of zeta](#page-27-0)

⁵ [Sketch of the proof](#page-45-0)

メロトメ 伊 トメ ミトメ ミト

 299

э

Defination

The k-th divisor function is defined by

$$
d_k(n) := \#\{(m_1, \ldots, m_k) \in \mathbb{N}^k \mid m_1 \cdots m_k = n\}.
$$

 $\zeta(s)^k = \sum_{n=1}^{\infty} \frac{d_k(n)}{n^s}, \quad \Re\mathfrak{e}(s) > 1.$

メロトメ 伊 トメ ミトメ ミト

G.

Defination

The k-th divisor function is defined by

$$
d_k(n) := \#\{(m_1, \ldots, m_k) \in \mathbb{N}^k \mid m_1 \cdots m_k = n\}.
$$

•
$$
\zeta(s)^k = \sum_{n=1}^{\infty} \frac{d_k(n)}{n^s}
$$
, $\Re(\epsilon) > 1$.

Defination

The additive divisor sum is defined by

$$
D_{k,\ell}(x,r):=\sum_{n\leq x}d_k(n)d_\ell(n+r) \text{ for } r\in\mathbb{Z}\backslash\{0\}.
$$

イロト イ御 トイ ヨ トイ ヨ)

Defination

The k-th divisor function is defined by

$$
d_k(n) := \#\{(m_1, \ldots, m_k) \in \mathbb{N}^k \mid m_1 \cdots m_k = n\}.
$$

•
$$
\zeta(s)^k = \sum_{n=1}^{\infty} \frac{d_k(n)}{n^s}
$$
, $\Re(\epsilon) > 1$.

Defination

The additive divisor sum is defined by

$$
D_{k,\ell}(x,r):=\sum_{n\leq x}d_k(n)d_\ell(n+r) \text{ for } r\in\mathbb{Z}\backslash\{0\}.
$$

• The cases of $k \ge 2$, $\ell = 2$ have been proved by Drappeau, Motohashi, Topacogullari, many others.

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

Defination

The k-th divisor function is defined by

$$
d_k(n) := \#\{(m_1, \ldots, m_k) \in \mathbb{N}^k \mid m_1 \cdots m_k = n\}.
$$

•
$$
\zeta(s)^k = \sum_{n=1}^{\infty} \frac{d_k(n)}{n^s}
$$
, $\Re(\epsilon) > 1$.

Defination

The additive divisor sum is defined by

$$
D_{k,\ell}(x,r):=\sum_{n\leq x}d_k(n)d_\ell(n+r) \text{ for } r\in\mathbb{Z}\setminus\{0\}.
$$

• The cases of $k > 2$, $\ell = 2$ have been proved by Drappeau, Motohashi, Topacogullari, many others.

Theorem (Motohashi, 1994)

$$
D_{2,2}(x,r) = x(c_0(r)(\log x)^2 + c_1(r)(\log x) + c_2(r)) + O(x^{\frac{2}{3}+\epsilon})
$$

uniformly for $|r| \leq x^{\frac{20}{27}}$, where $c_0(r) = \frac{6}{\pi^2} \sum_{d|r} d^{-1}$.

Additive Divisor Conjecture (Vinogradov-Ivic-Conrey-Gonek, 1989-1998)

For every $\varepsilon > 0$ and for every $\varepsilon' \in (0,1)$, we have

$$
D_{k,\ell}(x,r)=\sum_{n\leq x}d_k(n)d_\ell(n+r)=\text{main term}+\mathcal{O}(x^{\frac{1}{2}+\varepsilon}),
$$

uniformly for $1 \leq |r| \leq x^{1-\varepsilon'}$.

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

 299

э

Additive Divisor Conjecture (Vinogradov-Ivic-Conrey-Gonek, 1989-1998)

For every $\varepsilon > 0$ and for every $\varepsilon' \in (0,1)$, we have

$$
D_{k,\ell}(x,r)=\sum_{n\leq x}d_k(n)d_\ell(n+r)=\text{main term}+\mathcal{O}(x^{\frac{1}{2}+\varepsilon}),
$$

uniformly for $1 \leq |r| \leq x^{1-\varepsilon'}$.

The main term can be expressed explicitly, and a simple form of it was obtained by Ng-Thom (2016) and Tao (blogpost, 2016).

イロト イ押 トイヨ トイヨト

Additive Divisor Conjecture (Vinogradov-Ivic-Conrey-Gonek, 1989-1998)

For every $\varepsilon > 0$ and for every $\varepsilon' \in (0,1)$, we have

$$
D_{k,\ell}(x,r)=\sum_{n\leq x}d_k(n)d_\ell(n+r)=\text{main term}+\mathcal{O}(x^{\frac{1}{2}+\varepsilon}),
$$

uniformly for $1 \leq |r| \leq x^{1-\varepsilon'}$.

The main term can be expressed explicitly, and a simple form of it was obtained by Ng-Thom (2016) and Tao (blogpost, 2016).

Smoothed Additive Divisor Conjecture (Non-precise version)

Let $f : [x, 2x] \times [y, 2y] \rightarrow \mathbb{R}$ be smooth. Assume $x \times y$. For every $\varepsilon > 0$ and for every $\varepsilon' \in (0,1)$, we have

$$
\sum_{m-n=r}d_k(m)d_{\ell}(n)f(m,n)=\text{main term}+\mathcal{O}(x^{\frac{1}{2}+\varepsilon}),
$$

uniformly for $1 \leq |r| \leq x^{1-\varepsilon'}$.

• Results for the case of $k = \ell = 2$ have been obtained by Duke-Friedlander-Iwaniec 1994 and Aryan 2017.

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

Table of Contents

[Moments of zeta](#page-2-0)

[Additive divisor sums](#page-15-0)

3 [Statement of results](#page-23-0)

⁴ [Shifted moments of zeta](#page-27-0)

⁵ [Sketch of the proof](#page-45-0)

メロトメ 伊 トメ ミトメ ミト

 299

目

The sixth moment $I_3(T)$ and the eight moment $I_4(T)$ The ternary additive divisor sum $(k = \ell = 3)$: $\sum_{n \leq x} d_3(n) d_3(n + r)$.

Theorem (Ng, 2021)

The smoothed ternary Additive Divisor Conjecture implies

$$
I_3(\mathcal{T})\sim \frac{42}{9!}\cdot a_3\cdot \mathcal{T}(\log \mathcal{T})^9.
$$

 299

イロト イ押 トイヨ トイヨト

The sixth moment $I_3(T)$ and the eight moment $I_4(T)$ The ternary additive divisor sum $(k = \ell = 3)$: $\sum_{n \leq x} d_3(n) d_3(n + r)$.

Theorem (Ng, 2021)

The smoothed ternary Additive Divisor Conjecture implies

$$
I_3(\mathcal{T})\sim \frac{42}{9!}\cdot a_3\cdot \mathcal{T}(\log \mathcal{T})^9.
$$

- Ng actually proved the full main term with a power savings error.
- Conrey and Gonek (1998) previously provided a heuristic argument for this.
- \bullet Ivic (1996) showed an averaged form of the ternary Additive Divisor Conjecture implies $I_3(T)\ll T^{1+\varepsilon}$.

←ロト ←何ト ←ヨト ←ヨト

The sixth moment $I_3(T)$ and the eight moment $I_4(T)$ The ternary additive divisor sum $(k = \ell = 3)$: $\sum_{n \leq x} d_3(n) d_3(n + r)$.

Theorem (Ng, 2021)

The smoothed ternary Additive Divisor Conjecture implies

$$
I_3(T) \sim \frac{42}{9!} \cdot a_3 \cdot T(\log T)^9.
$$

- Ng actually proved the full main term with a power savings error.
- Conrey and Gonek (1998) previously provided a heuristic argument for this.
- \bullet Ivic (1996) showed an averaged form of the ternary Additive Divisor Conjecture implies $I_3(T)\ll T^{1+\varepsilon}$.

The quaternary additive divisor sum $(k = \ell = 4)$: $\sum_{n \leq x} d_4(n) d_4(n + r)$.

Theorem (Ng-S.-Wong, 2022+, arXiv)

The RH and the smooth quaternary Additive Divisor Conjecture implies

$$
I_4(T) \sim \frac{24024}{16!} \cdot a_4 \cdot T(\log T)^{16}.
$$

 \bullet Proof based on works of Ng, Conrey-Gonek and Ivic. A key new input is the application of the sharp upper bound of shifted mom[en](#page-25-0)t[s o](#page-27-0)[f](#page-23-0) [z](#page-24-0)[e](#page-26-0)[ta](#page-27-0)[.](#page-22-0)

Table of Contents

[Moments of zeta](#page-2-0)

[Additive divisor sums](#page-15-0)

[Statement of results](#page-23-0)

⁴ [Shifted moments of zeta](#page-27-0)

⁵ [Sketch of the proof](#page-45-0)

メロトメ 伊 トメ ミトメ ミト

 299

目

Shifted moments of zeta

Conjecture (Chandee, 2010)

Let k be an even number. Let α_1, α_2 be real and satisfy certain conditions. Then

$$
\int_0^T |\zeta(\frac{1}{2} + i(t + \alpha_1))|^k |\zeta(\frac{1}{2} + i(t + \alpha_2)|^k dt
$$
\n
$$
\asymp_k \begin{cases}\nT(\log T)^{k^2} & \text{if } \lim_{T \to \infty} |\alpha_1 - \alpha_2| \log T = 0, \\
T(\log T)^{k^2} & \text{if } \lim_{T \to \infty} |\alpha_1 - \alpha_2| \log T = c \neq 0, \\
T(\frac{\log T}{|\alpha_1 - \alpha_2|})^{\frac{k^2}{2}} & \text{if } \lim_{T \to \infty} |\alpha_1 - \alpha_2| \log T = \infty.\n\end{cases}
$$

When $\alpha_1 = \alpha_2 = 0$, it is $\int_0^T |\zeta(\frac{1}{2} + \mathrm{i} t)|^{2k} dt$.

イロト イ押 トイヨ トイヨ)

Shifted moments of zeta

Conjecture (Chandee, 2010)

Let k be an even number. Let α_1, α_2 be real and satisfy certain conditions. Then

$$
\int_0^T |\zeta(\frac{1}{2} + i(t + \alpha_1))|^k |\zeta(\frac{1}{2} + i(t + \alpha_2)|^k dt
$$
\n
$$
\asymp_k \begin{cases}\nT(\log T)^{k^2} & \text{if } \lim_{T \to \infty} |\alpha_1 - \alpha_2| \log T = 0, \\
T(\log T)^{k^2} & \text{if } \lim_{T \to \infty} |\alpha_1 - \alpha_2| \log T = c \neq 0, \\
T(\frac{\log T}{|\alpha_1 - \alpha_2|})^{\frac{k^2}{2}} & \text{if } \lim_{T \to \infty} |\alpha_1 - \alpha_2| \log T = \infty.\n\end{cases}
$$

- When $\alpha_1 = \alpha_2 = 0$, it is $\int_0^T |\zeta(\frac{1}{2} + \mathrm{i} t)|^{2k} dt$.
- **It shows the correlation between zeta functions.**

イロト イ押 トイヨ トイヨ)

Shifted moments of zeta

Conjecture (Chandee, 2010)

Let k be an even number. Let α_1, α_2 be real and satisfy certain conditions. Then

$$
\int_0^T |\zeta(\frac{1}{2} + i(t + \alpha_1))|^k |\zeta(\frac{1}{2} + i(t + \alpha_2)|^k dt
$$
\n
$$
\asymp_k \begin{cases}\nT(\log T)^{k^2} & \text{if } \lim_{T \to \infty} |\alpha_1 - \alpha_2| \log T = 0, \\
T(\log T)^{k^2} & \text{if } \lim_{T \to \infty} |\alpha_1 - \alpha_2| \log T = c \neq 0, \\
T(\frac{\log T}{|\alpha_1 - \alpha_2|})^{\frac{k^2}{2}} & \text{if } \lim_{T \to \infty} |\alpha_1 - \alpha_2| \log T = \infty.\n\end{cases}
$$

- When $\alpha_1 = \alpha_2 = 0$, it is $\int_0^T |\zeta(\frac{1}{2} + \mathrm{i} t)|^{2k} dt$.
- It shows the correlation between zeta functions.
- Chandee proved the lower bound, and also an upper bound off by (log $X)^\varepsilon$.

イロメ イ押メ イモメイモ

Theorem (Chandee, 2010)

Let $k_i > 0$. Let α_i be real and satisfy certain conditions. Then RH implies

$$
\int_0^T |\zeta(\frac{1}{2} + i(t + \alpha_1))|^{2k_1} \cdots |\zeta(\frac{1}{2} + i(t + \alpha_m)|^{2k_m} dt
$$

$$
\ll_{k,\varepsilon} T(\log T)^{k_1^2 + \cdots + k_m^2 + \varepsilon} \prod_{i < j} \left(\min \left\{ \frac{1}{|\alpha_i - \alpha_j|}, \log T \right\} \right)^{2k_j k_j}.
$$

イロト イ御 トイ ヨ トイ ヨ)

Theorem (Chandee, 2010)

Let $k_i > 0$. Let α_i be real and satisfy certain conditions. Then RH implies

$$
\int_0^T |\zeta(\frac{1}{2} + i(t + \alpha_1))|^{2k_1} \cdots |\zeta(\frac{1}{2} + i(t + \alpha_m)|^{2k_m} dt
$$

$$
\ll_{\mathbf{k}, \varepsilon} T(\log T)^{k_1^2 + \cdots + k_m^2 + \varepsilon} \prod_{i < j} \left(\min \left\{ \frac{1}{|\alpha_i - \alpha_j|}, \log T \right\} \right)^{2k_i k_j}.
$$

• Let
$$
\alpha_1 = \alpha_2 = \cdots = \alpha_m = 0
$$
. It is

$$
\int_0^T |\zeta(\tfrac{1}{2}+it)|^{2k} dt \ll T(\log T)^{k^2+\varepsilon}.
$$

(Soundararajan, 2009)

- Application: Upper bounds of shifted moments can be applied to certain problems on the edge of what can be solved.
- When $|\alpha_i-\alpha_j|=0$ for all $i < j,$ the shifted moment $\ll \mathcal{T}(\log\mathcal{T})^{(k_1+\cdots k_m)^2+\varepsilon}.$ When $|\alpha_i-\alpha_j|\gg 1$ for all $i< j,$ the shifted moment $\ll \mathcal{T}(\log\mathcal{T})^{k_1^2+\cdots+k_m^2+\varepsilon}.$ There is a gap between $(k_1+\cdots k_m)^2$ and $k_1^2+\cdots k_m^2$, which one can empoly.

Applications of shifted moments

Let f be a cusp form. Let $\chi_d(n) := \left(\frac{d}{n}\right)$ denote the Kronecker symbol.

Theorem (Soundararajan-Young, 2010)

Assume GRH. Let α_1, α_2 be real and $|\alpha_1|, |\alpha_2| \leq X$ and let $0 \leq \sigma \leq 1/\log X$. Then

$$
\sum_{\substack{|d| \leq X \\ d \text{ fund. discr.}}} |L(\frac{1}{2} + \sigma + i\alpha_1, f \otimes \chi_d)| |L(\frac{1}{2} + \sigma + i\alpha_2, f \otimes \chi_d)|
$$

$$
\ll X(\log X)^{1/2 + \varepsilon} \left(1 + \min\left\{(\log X)^{1/2}, \frac{1}{|\alpha_1 - \alpha_2|^{1/2}}\right\}\right).
$$

 \mathcal{L} and \mathcal{L} and \mathcal{L} in the set of \mathcal{L}

Theorem (Soundararajan-Young, 2010) Under GRH, $0 < d < X$ d fund. discr. $L(\frac{1}{2}, f \otimes \chi_d)^2 \sim c \cdot X \log X,$

where c is an explicit constant.

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

 299

э

Theorem (Soundararajan-Young, 2010)

Under GRH,

۰

$$
\sum_{\substack{0
$$

where c is an explicit constant.

$$
L(\tfrac{1}{2},f\otimes \chi_d)\approx \sum_{n\leq d^{1+\varepsilon}\ll X^{1+\varepsilon}}\frac{\lambda_f(n)d(n)}{n^{\frac{1}{2}}}.
$$

is of length $X^{1+\varepsilon}$.

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

 299

э

Theorem (Soundararajan-Young, 2010)

Under GRH,

$$
\sum_{\substack{0
$$

where c is an explicit constant.

۰

$$
L(\tfrac{1}{2},f\otimes \chi_d)\approx \sum_{n\leq d^{1+\varepsilon}\ll X^{1+\varepsilon}}\frac{\lambda_f(n)d(n)}{n^{\frac{1}{2}}}.
$$

is of length $X^{1+\varepsilon}$. Hard to handle this length.

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

Theorem (Soundararajan-Young, 2010)

Under GRH,

$$
\sum_{\substack{0
$$

where c is an explicit constant.

$$
L(\frac{1}{2},f\otimes \chi_d)\approx \sum_{n\leq d^{1+\varepsilon}\ll X^{1+\varepsilon}}\frac{\lambda_f(n)d(n)}{n^{\frac{1}{2}}}.
$$

is of length $X^{1+\varepsilon}$. Hard to handle this length.

· Idea:

۰

Length of Poly. $\textstyle{\mathcal{X}^{1+\varepsilon}}$ (Hard)

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

 QQ

Theorem (Soundararajan-Young, 2010)

Under GRH,

$$
\sum_{\substack{0
$$

where c is an explicit constant.

۰

$$
L(\frac{1}{2}, f \otimes \chi_d) \approx \sum_{n \leq d^{1+\epsilon} \ll X^{1+\epsilon}} \frac{\lambda_f(n)d(n)}{n^{\frac{1}{2}}}.
$$

is of length $X^{1+\varepsilon}$. Hard to handle this length.

· Idea:

Length of Poly. $X^{1+\varepsilon}$ (Hard) $\xrightarrow{\text{Tool: Upper bound of shifted moments}}$ X $\frac{1}{(\log X)^{100}}$ (Solvable)

イロト イ押 トイヨ トイヨト

G.

Theorem (Soundararajan-Young, 2010)

Under GRH,

$$
\sum_{\substack{0
$$

where c is an explicit constant.

۰

$$
L(\frac{1}{2}, f \otimes \chi_d) \approx \sum_{n \leq d^{1+\epsilon} \ll X^{1+\epsilon}} \frac{\lambda_f(n)d(n)}{n^{\frac{1}{2}}}.
$$

is of length $X^{1+\varepsilon}$. Hard to handle this length.

· Idea:

Length of Poly. $X^{1+\varepsilon}$ (Hard) $\xrightarrow{\text{Tool: Upper bound of shifted moments}}$ X $\frac{1}{(\log X)^{100}}$ (Solvable)

\n- $$
\sum_{d \text{ fund. discr.}} L(\frac{1}{2}, \chi_d)^4
$$
. Florea, 2017 (function field), and S., 2020.
\n- $\sum_{q \leq Q} \sum_{\chi \text{ word } q} \chi_{\text{even, primitive}} \int_{-\infty}^{\infty} |\Lambda(\frac{1}{2} + iy, \chi)|^8 dy$, where Λ is the completed *L*-function of the Dirichlet *L*-function. Chande-Li, 2014.
\n

イロト イ押 トイヨ トイヨト

G.

イロト イ部 トイミト イミト

重

۰

Length of Poly. $\mathcal{T}^{2+\varepsilon}$ (Hard) $\xrightarrow{\text{Tool: Upper bound of shifted moments}}$ \mathcal{T}^2 $\overline{(\log T)^{100}}$ (Still hard)

イロト イ押 トイヨ トイヨ トー

G.

 QQ

Length of Poly. $\mathcal{T}^{2+\varepsilon}$ (Hard) $\xrightarrow{\text{Tool: Upper bound of shifted moments}}$ \mathcal{T}^2 $\overline{(\log T)^{100}}$ (Still hard)

· Idea:

۰

Length of Poly. $T^{2+\varepsilon}$ (Hard) $\xrightarrow{T=0}$ is reduced to $T^{2-\varepsilon}$ (Solvable)
Tool: Sharp upper bound of shifted moments

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$

۰

Length of Poly. $\mathcal{T}^{2+\varepsilon}$ (Hard) $\xrightarrow{\text{Tool: Upper bound of shifted moments}}$ \mathcal{T}^2 $\overline{(\log T)^{100}}$ (Still hard)

· Idea:

Length of Poly. $T^{2+\varepsilon}$ (Hard) $\xrightarrow{T=0}$ is reduced to $T^{2-\varepsilon}$ (Solvable)
Tool: Sharp upper bound of shifted moments

Sharp upper bound of shifted moments:

Theorem (Ng-S.-Wong, 2022+, arXiv) Let $k > 1$. Let α_1, α_2 be real and satisfy certain conditions. Then RH implies \int_0^7 $\int_0^1 |\zeta(\tfrac 12 + \mathrm{i}(t+\alpha_1))|^k \, |\zeta(\tfrac 12 + \mathrm{i}(t+\alpha_2)|^k dt \ll_k T(\log T)^{\frac{k^2}{2}} \mathcal{F}(T,\alpha_1,\alpha_2)^{\frac{k^2}{2}},$

where

$$
\mathcal{F}(\mathcal{T},\alpha_1,\alpha_2)=\begin{cases}\min\left\{\frac{1}{|\alpha_1-\alpha_2|},\log \mathcal{T}\right\} & \text{ if }|\alpha_1-\alpha_2|\leq \frac{1}{100}; \\ \log(2+|\alpha_1-\alpha_2|) & \text{ if }|\alpha_1-\alpha_2|>\frac{1}{100}.\end{cases}
$$

 Ω

It is the version of Chandee's upper bound without $(\log X)^{\varepsilon}$ $(\log X)^{\varepsilon}$ $(\log X)^{\varepsilon}$ $(\log X)^{\varepsilon}$ $(\log X)^{\varepsilon}$ [.](#page-39-0)

• Let $\alpha_1 = \alpha_2 = 0$. It is

$$
\int_0^T |\zeta(\tfrac{1}{2}+it)|^{2k} dt \ll T(\log T)^{k^2}.
$$

(Harper, 2013)

- Together with the lower bound given by Chandee, it completes the proof of Chandee's conjecture.
- The idea has a cost of not getting an error term in the asymptotic for $I_4(T)$:

$$
I_4(T) \sim \frac{24024}{16!} \cdot a_4 \cdot T(\log T)^{16}.
$$

 QQ

イロ トラ 河 トラ モトラ モト

Table of Contents

[Moments of zeta](#page-2-0)

[Additive divisor sums](#page-15-0)

[Statement of results](#page-23-0)

⁴ [Shifted moments of zeta](#page-27-0)

⁵ [Sketch of the proof](#page-45-0)

メロトメ 伊 トメ ミトメ ミト

 299

目

Approximate functional equation:

$$
|\zeta(\frac{1}{2}+it)|^8 \approx \sum_{\substack{m,n=1 \ m, n \leq T^{2+\epsilon}}}^{\infty} \frac{d_4(m)d_4(n)}{m^{\frac{1}{2}}n^{\frac{1}{2}}} \left(\frac{m}{n}\right)^{-it}.
$$

メロトメ 伊 トメ ミトメ ミト

重

Approximate functional equation:

$$
|\zeta(\frac{1}{2}+it)|^8 \approx \sum_{\substack{m,n=1\\m,n \leq T^{2+\epsilon}}}^{\infty} \frac{d_4(m)d_4(n)}{m^{\frac{1}{2}}n^{\frac{1}{2}}} \left(\frac{m}{n}\right)^{-it}.
$$

• $I_4(T)$ is like

$$
\int_T^{2T}\sum_{\substack{m,n=1\\m,n\leq T^{2+\epsilon}}}^{\infty}\frac{d_4(m)d_4(n)}{m^{\frac{1}{2}}n^{\frac{1}{2}}} \left(\frac{m}{n}\right)^{-it}dt
$$

メロトメ 伊 トメ ミトメ ミト

重

Approximate functional equation:

$$
|\zeta(\frac{1}{2}+it)|^8 \approx \sum_{\substack{m,n=1\\m,n \leq T^{2+\epsilon}}}^{\infty} \frac{d_4(m)d_4(n)}{m^{\frac{1}{2}}n^{\frac{1}{2}}} \Big(\frac{m}{n}\Big)^{-it}.
$$

• $I_4(T)$ is like

$$
\int_{T}^{2T}\sum_{\substack{m,n=1\\m,n\leq T^{2+\epsilon}}}^{\infty}\frac{d_4(m)d_4(n)}{m^{\frac{1}{2}}n^{\frac{1}{2}}} \left(\frac{m}{n}\right)^{-it}dt
$$

Use the sharp upper bound for shifted moments of zeta to obtain

$$
\int_{T}^{2T}\sum_{\substack{m,n=1\\m,n\leq T^{2-\epsilon}}}^{\infty}\frac{d_4(m)d_4(n)}{m^{\frac{1}{2}}n^{\frac{1}{2}}} \left(\frac{m}{n}\right)^{-it}dt
$$

 $2Q$

э

イロト イ押 トイヨ トイヨト

Approximate functional equation:

$$
|\zeta(\frac{1}{2}+it)|^8 \approx \sum_{\substack{m,n=1\\m,n \leq T^{2+\epsilon}}}^{\infty} \frac{d_4(m)d_4(n)}{m^{\frac{1}{2}}n^{\frac{1}{2}}} \left(\frac{m}{n}\right)^{-it}.
$$

• $I_4(T)$ is like

$$
\int_{T}^{2T}\sum_{\substack{m,n=1\\m,n\leq T^{2+\epsilon}}}^{\infty}\frac{d_4(m)d_4(n)}{m^{\frac{1}{2}}n^{\frac{1}{2}}}\left(\frac{m}{n}\right)^{-it}dt
$$

Use the sharp upper bound for shifted moments of zeta to obtain

$$
\int_{T}^{2T}\sum_{\substack{m,n=1\\m,n\leq T^{2-\epsilon}}}^{\infty}\frac{d_4(m)d_4(n)}{m^{\frac{1}{2}}n^{\frac{1}{2}}}\left(\frac{m}{n}\right)^{-it}dt
$$

- The case $m = n$ is the diagonal term, which gives one main term.
- Th[e](#page-49-0) [c](#page-50-0)[a](#page-45-0)se $m \neq n$ $m \neq n$ is the off-diagonal terms, which is [muc](#page-48-0)[h m](#page-50-0)[o](#page-44-0)[r](#page-46-0)e com[pli](#page-52-0)[c](#page-44-0)a[ted](#page-52-0)[.](#page-0-0)

 Ω

∍

• For off-diagonal terms $(m \neq n)$, use Smooth Partition of Unity to put variables in dyadic boxes:

$$
\sum_{\substack{M,N\\MM\leq T^{4-\varepsilon},M\asymp N}}\frac{2T}{\sqrt{MN}}\sum_{1\leq|r|\ll\frac{M}{T_0}T^{\varepsilon}}\widetilde{D}_{2,2}(f_r,r).
$$

Apply the Additive Divisor Conjecture in $\sum_{1 \leq |r| \ll \frac{M}{T_0}T^\varepsilon} D_{2,2}(f_r, r).$

4 17 18

- 4 何 ▶ - 4 ヨ ▶ - 4 ヨ ▶

 $2Q$

 $\bullet\,$ For off-diagonal terms $(m\neq n)$, use Smooth Partition of Unity to put variables in dyadic boxes:

$$
\sum_{\substack{M,N\\MM\leq T^{4-\varepsilon},M\asymp N}}\frac{2T}{\sqrt{MN}}\sum_{1\leq|r|\ll\frac{M}{T_0}T^{\varepsilon}}\widetilde{D}_{2,2}(f_r,r).
$$

- Apply the Additive Divisor Conjecture in $\sum_{1 \leq |r| \ll \frac{M}{T_0}T^\varepsilon} D_{2,2}(f_r, r).$
- Evaluation of certain contour integrals gives the other main term.

イロト イ押 トイヨ トイヨト

Thank you for listening!

イロト イ部 トイミト イミト

É