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Equidistribution in Arithmetic progressions
Let π(x) = #{p ≤ x : p-prime},
and π(x ; q, a) = #{p ≤ x : p-prime, p ≡ a (mod q)}.

For (a, q) = 1, as x →∞,

π(x ; q, a) ∼ 1

φ(q)
π(x).

Denote

∆π(x ; q, a) := π(x ; q, a)− π(x)

φ(q)
.

Bombieri-Vinogradov Theorem: Given any A > 0,∑
q≤Q

max
(a,q)=1

max
y≤x

∣∣∣∣∆π(x ; q, a)

∣∣∣∣�A
x

(log x)A

holds for Q = x1/2

(log x)B
, for some B = B(A) > 0.
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Equidistribution seems to fail for large moduli
EHΛ(Q): Given any A > 0,∑

q≤Q

max
(a,q)=1

max
y≤x

∣∣∣∣ ∑
n≤y

n≡a (mod q)

Λ(n)− y

φ(q)

∣∣∣∣�A
x

(log x)A
.

I Elliott and Halberstam conjectured that EHΛ(Q) holds for
Q = xα/(log x)B for any α ≤ 1.

I Call α to be the level of distribution.
I The case α = 1 was disproved by Friedlander-Granville.

Theorem (Friedlander-Granville, 1989)

Fix B > 1. There exist arbitrarily large values of a and x for which

∑
q≤x/(log x)B

(a,q)=1

∣∣∣∣∣∣∣∣
∑
n≤x

n≡a (mod q)

Λ(n)− x

φ(q)

∣∣∣∣∣∣∣∣�B x .
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Equidistribution for a general function

Bombieri-Vinogradov type results: Can we expect equidistribution for
other arithmetical functions?

Siebert and Wolke constructed a class of multiplicative functions f
satisfying certain growth conditions, such that the equidistribution result∑

q≤x1/2/(log x)B

max
(a,q)=1

max
y≤x

∣∣∣∣∆f (y ; q, a)

∣∣∣∣� x

(log x)A

holds, where

∆f (y ; q, a) :=
∑
n≤y

n≡a (mod q)

f (n)− 1

φ(q)

∑
n≤y

(n,q)=1

f (n).

Friedlander-Granville type results: Should we expect limitation to
equidistribution for other arithmetic functions?
Yes: results by Granville-Soundararajan, Thorne, etc.
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“Disjunction” results

Granville-Soundararajan: At least one of the two following assumptions
holds:

1 There is a discrepancy in the distribution in AP to a small modulus,
i.e., ∣∣∣∣ ∑

n≤x
n≡a (mod q)

f (n)− 1

φ(q)

∑
n≤x

(n,q)=1

f (n)

∣∣∣∣
is large for q ≤ x2/3.

2 There is a discrepancy in the distribution over large intervals, i.e.,∣∣∣∣ ∑
y<n≤y+h

f (n)− h

x

∑
n≤x

(n,q)=1

f (n)

∣∣∣∣
is large for some h ≥ (log x)α and some y ∈ (x/4, x).
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Motivation

Let τ(n) = #divisors of n, then what can we say about

∆τ (x ; q, a) =
∑
n≤y

n≡a (mod q)

τ(n)− 1

φ(q)

∑
n≤y

(n,q)=1

τ(n)?

Bombieri-Vinogradov type result: level of distribution θ = 2/3 due to
Hooley, Linnik and Selberg.

There are results due to Fouvry - Iwaniec, Banks - Heath-Brown -
Shparlinski, Blomer, etc in the direction to push θ beyond 2/3 by
averaging over restricted moduli q.

Irving derived an upper bound for one particular ∆τ (x ; q, a) for q as large
as x55/82 provided q is sufficiently smooth.

Friedlander-Granville type result: Open.

Aditi Savalia (IIT Gandhinagar) Limitations to equidistribution in AP July 27, 2022 6 / 23



Motivation

Let τ(n) = #divisors of n, then what can we say about

∆τ (x ; q, a) =
∑
n≤y

n≡a (mod q)

τ(n)− 1

φ(q)

∑
n≤y

(n,q)=1

τ(n)?

Bombieri-Vinogradov type result: level of distribution θ = 2/3 due to
Hooley, Linnik and Selberg.

There are results due to Fouvry - Iwaniec, Banks - Heath-Brown -
Shparlinski, Blomer, etc in the direction to push θ beyond 2/3 by
averaging over restricted moduli q.

Irving derived an upper bound for one particular ∆τ (x ; q, a) for q as large
as x55/82 provided q is sufficiently smooth.

Friedlander-Granville type result: Open.

Aditi Savalia (IIT Gandhinagar) Limitations to equidistribution in AP July 27, 2022 6 / 23



Motivation

Let τ(n) = #divisors of n, then what can we say about

∆τ (x ; q, a) =
∑
n≤y

n≡a (mod q)

τ(n)− 1

φ(q)

∑
n≤y

(n,q)=1

τ(n)?

Bombieri-Vinogradov type result: level of distribution θ = 2/3 due to
Hooley, Linnik and Selberg.

There are results due to Fouvry - Iwaniec, Banks - Heath-Brown -
Shparlinski, Blomer, etc in the direction to push θ beyond 2/3 by
averaging over restricted moduli q.

Irving derived an upper bound for one particular ∆τ (x ; q, a) for q as large
as x55/82 provided q is sufficiently smooth.

Friedlander-Granville type result: Open.

Aditi Savalia (IIT Gandhinagar) Limitations to equidistribution in AP July 27, 2022 6 / 23



Motivation

Let τ(n) = #divisors of n, then what can we say about

∆τ (x ; q, a) =
∑
n≤y

n≡a (mod q)

τ(n)− 1

φ(q)

∑
n≤y

(n,q)=1

τ(n)?

Bombieri-Vinogradov type result: level of distribution θ = 2/3 due to
Hooley, Linnik and Selberg.

There are results due to Fouvry - Iwaniec, Banks - Heath-Brown -
Shparlinski, Blomer, etc in the direction to push θ beyond 2/3 by
averaging over restricted moduli q.

Irving derived an upper bound for one particular ∆τ (x ; q, a) for q as large
as x55/82 provided q is sufficiently smooth.

Friedlander-Granville type result: Open.

Aditi Savalia (IIT Gandhinagar) Limitations to equidistribution in AP July 27, 2022 6 / 23



Motivation

Let τ(n) = #divisors of n, then what can we say about

∆τ (x ; q, a) =
∑
n≤y

n≡a (mod q)

τ(n)− 1

φ(q)

∑
n≤y

(n,q)=1

τ(n)?

Bombieri-Vinogradov type result: level of distribution θ = 2/3 due to
Hooley, Linnik and Selberg.

There are results due to Fouvry - Iwaniec, Banks - Heath-Brown -
Shparlinski, Blomer, etc in the direction to push θ beyond 2/3 by
averaging over restricted moduli q.

Irving derived an upper bound for one particular ∆τ (x ; q, a) for q as large
as x55/82 provided q is sufficiently smooth.

Friedlander-Granville type result: Open.

Aditi Savalia (IIT Gandhinagar) Limitations to equidistribution in AP July 27, 2022 6 / 23



Our results

Friedlander-Granville type results for a family of functions satisfying
certain hypotheses.

Friedlander-Granville type of results for short arithmetic progressions.

Applications to
1 primes in short arithmetic progressions
2 Beatty primes
3 restricted divisor function defined as

τz(n) =

{
τ(n) if P−(n)1 ≥ z ,

0 otherwise.

4 φ(x , z) = #{n ≤ x : P−(n) > z}.

1P−(n) := the smallest prime p|n
1P−(n) := the smallest prime p|n
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Application to prime numbers

F-G type result for short arithmetic progressions:

Corollary 1 (S., Vatwani)

Fix A > 1. There exist arbitrarily large values of a, x and h = h(x) in the
range x7/12 ≤ h ≤ x , such that∑

q≤ h

(log h)A

(q,a)=1

∣∣∣∣ ∑
x<n≤x+h

n≡a (mod q)

Λ(n)− h

φ(q)

∣∣∣∣�A
h

log log x
.
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Application to Beatty primes

Given two real numbers α and β, the corresponding Beatty sequence is
defined as Bα,β = (bαn + βc)n.

Corollary 2(S., Vatwani)

Let α > 0 be an irrational number of finite typea and let β ∈ R. Fix
A ≥ 1. There are arbitrary large values of a and x for which we have∑

q≤x/(log x)A

(q,a)=1

∣∣∣∆Bα,β (x ; q, a)
∣∣∣�A x .

aSay that α is of finite type if sup {ρ ∈ R : lim infn→∞ nρ‖nγ‖ = 0} <∞,
where ‖x‖ denotes the distance of x from the nearest integer.
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Application to restricted divisor function

Corollary 3(S., Vatwani)

Fix A > 1. Let z be sufficiently large and P = P(z) :=
∏

p<z p.

(i) Let c0 ≥ 2 and log z � D ≤ z . There exist arbitrarily large values of
a, x satisfying z log z � log x � zc0 , for which∑

q≤ x

(log x)A

(q,a)=1

∣∣∣∣∆τz (x ; q, a)

∣∣∣∣�A
x log2 x

log z
.

(ii) Let ε > 0, B > 1 and c0 ≥ 2. There exist arbitrarily large values of a,

x and h = h(x), satisfying z1+ 1
B � log x � zc0 and

x1/2+ε ≤ h(x) ≤ o(x), for which

∑
q≤ h

(log h)A

(q,a)=1

∣∣∣∣ ∑
x<n≤x+h

n≡a (mod q)

τz(n)− 1

φ(q)

∑
x<n≤x+h

(n,q)=1

τz(n)

∣∣∣∣�A log

(
zc0

log x

)
h log2 x

(log z)2
.
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GENERAL RESULT
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A general class of functions

We will work with f satisfying certain hypotheses. Denote

fz(n) :=

{
f (n) if P−(n) ≥ z ,

0 otherwise.

Also, let F (x , z) =
∑
n≤x

fz(n) and P = P(z) =
∏

p<z p.

H1. f (n)� τk(n) for some k ≥ 1.

H2. Let q free of prime factors below log q. There exists a constant
κf ≥ 0 such that∑

n≤x
(n,q)=1

fz(n) =

(
1 + O

(
1

log z

))(
φ(q)

q

)κf

F (x , z),

uniformly in the range x ≥ P(z)D , and P
D
2 < q ≤ PD

z log z , where D
satisfies c log z ≤ D ≤ z for some constant c > 0.
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A general class of functions (contd)

H3. (Equidistribution over small moduli) There exist arbitrarily large
values of z for which∑

x<n≤x+h
n≡a (mod P)

fz(n) =

(
1 + O

(
1

log z

))
1

φ(P)

(
F (x + h, z)− F (x , z)

)
,

in the ranges (a,P) = 1, x ≥ PD , x
2 ≤ h ≤ x , where c log z ≤ D ≤ z

for some constant c > 0.
(For primes, a renowned result due to Gallagher)

H4. (Long average vs short average) We have

1

h

∑
X<n≤X+h

fz(n) =

(
1 + O

(
1

log z

))
1

x

∑
n≤x

fz(n),

for x ≤ X ≤ 2x , x
2 ≤ h ≤ x and x ≥ PD , where D satisfies

c log z ≤ D ≤ z for some constant c > 0.
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A general class of functions (contd)

Finally, we hypothesize a lower bound on the average order of fz :

H5. Let k be as in H1. We have

1

x

(
F (2x , z)− F (x , z)

)
�

{
1/log z if k = 1

exp
(
−ε log x

log2 x

)
for any ε > 0 if k ≥ 2,

in the range x ≥ PD , where D satisfies c log z ≤ D ≤ z for some
constant c > 0.

Examples

f = τk : satisfies H1 to H5:

f = 1, so F (x , z) = Φ(x , z): satisfies H1 to H5:

f = Λ: satisfies H2 to H5:
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Theorem A (S., Vatwani)

Fix C > 1, c0 ≥ 2. Assume that f satisfies H1-H5. Let z be sufficiently
large. Then we have the following.
There exist arbitrarily large values of a and x satisfying

z log z � log x ≤ zc0

such that

∑
q< x

(log x)C

(q,a)=1

∣∣∣∣∣ ∑
n≤x

n≡a (mod q)

fz(n)− 1

φ(q)

∑
n≤x

(n,q)=1

fz(n)

∣∣∣∣∣�C
(log log x)2

log x
F (x , z).
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Proof of Theorem A

Consider the following Maier matrix, having U columns and V rows.

M =


(V + 1)P + q (V + 1)P + 2q . . . (V + 1)P + Uq

...
...

. . .
...

(2V − 1)P + q (2V − 1)P + 2q . . . (2V − 1)P + Uq
2VP + q 2VP + 2q . . . 2VP + Uq

 .

Let fz(M) be the matrix obtained by applying fz to each entry.
Let ΣM denote the sum of all the entries of fz(M).
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Counting Column-wise:

ΣM = UV

(
1

VP
F (VP, z)

)(
eγω

(
logU

log z

)
+ O

(
1

log z

))
.

Counting Row-wise:

ΣM =

(
1 + O

(
1

log z

))
UV

(
1

VP

(
F (VP, z)

))
+ ∆q,

where,

∆q :=
∑

V<r≤2V
(r ,q)=1

(
∆fz (xr ; q, ar )−∆fz (ar ; q, ar )

)
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Proof of Theorem A

Comparing the two expressions for fz(M), we find that

|∆q| ≥
(∣∣∣eγω( logU

log z

)
− 1
∣∣∣+ O

( 1

log z

))
UV

(
1

VP

(
F (VP, z)

))
.

A key property of the Buchstab function: ω(u)− e−γ has at most two
zeros in every interval [u, u + 1]! By restricting the range of U wrt z
suitably, we have a constant CB > 0 such that

|∆q| ≥
1

4

(
CB + O

( 1

log z

))
UV

(
1

VP

(
F (VP, z)

))
.

Summing over suitable q gives sufficient lower bound.
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Versions of Theorem A: f supported on primes

Theorem 2 (Savalia, Vatwani, 2022+)

Fix A > 1. Assume that f satisfies f (n)� Λ(n), hypotheses H2-H4 and
the bound

1

x
F (x , z)� 1

x
1
2−ε

,

for some 0 < ε < 1/2. We have the following bounds.
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Versions of Theorem A: f supported on primes

Theorem 2 (contd)

(i) Let c0 ≥ 2. There exist arbitrarily large values of z , and values of a
and x satisfying z log z � log x ≤ zc0 , for which∑

q<x/(log x)A

(q,a)=1

∣∣∣∣ ∑
n≤x

n≡a (mod q)

fz(n)− 1

φ(q)

∑
n≤x

(n,q)=1

fz(n)

∣∣∣∣�A
log z

log2 x

∑
n≤x

fz(n).

(ii) If the summatory function of f satisfies∑
n≤x

f (n)� x

(log x)Cf
,

for some absolute constant Cf , then there are arbitrarily large values
of a and x for which we have∑

q≤ x

(log x)A

(q,a)=1

∣∣∣∣∣ ∑
n≤x

n≡a (mod q)

f (n)− 1

φ(q)

∑
n≤x

(n,q)=1

f (n)

∣∣∣∣∣�A

∑
n≤x

f (n).
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Versions of Theorem A: Short intervals

Theorem 3 (Savalia, Vatwani, 2022+)

Fix A > 1, c0 ≥ 2. Assume that f satisfies hypotheses H1, H3, H5 and
suitable short interval versions of H2 and H4. Let z be sufficiently large.
For any B > 1 we have the following bounds.
There exist arbitrarily large values of a, x satisfying

z1+1/B < log x ≤ zc0

4
,

and sufficiently small length of interval h(x) for which∑
q≤ h

(log h)A

(q,a)=1

∣∣∣∣∣ ∑
x<n≤x+h

n≡a (mod q)

fz(n)− 1

φ(q)

∑
x<n≤x+h

(n,q)=1

fz(n)

∣∣∣∣∣
�A log

(
zc0

log x

)
log log x

log x

∑
x<n≤x+h

fz(n).
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Thank you for your attention!
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