Double Square Moments and Bounds for Resonance Sums for Cusp Forms

> Joint Work with Professors Tim Gillespie, Yangbo Ye

Workshop on Moments of L-functions 2022

Praneel Samanta The University of Iowa

INTRODUCTION

- f and g holomorphic cusp forms for $SL_2(\mathbb{Z})$ of weights k_1 and k_2 respectively.
- Fix $0 < \beta < 1$ and $\alpha \neq 0$.
- φ smooth with compact support in $(1,2)$.
- Define ''resonance sum''

$$
S_X(f,g,\alpha,\beta)=\sum_n \lambda_f(n)\lambda_g(n)e(\alpha n^\beta)\varphi\Big(\frac{n}{X}\Big).
$$

• These weights correspond to the coefficients from the Rankin-Selberg L -function

$$
L(s, f \times g) = \zeta(2s) \sum_{n \ge 1} \frac{\lambda_f(n) \lambda_g(n)}{n^s},
$$

absolutely convergent for $Re(s) > 1$.

• The goal is to examine the oscillatory behavior of the coefficients $\lambda_f(n)\lambda_q(n)$.

Hypothesis S

• In 1976, Vinogradov proved

$$
\sum_{\substack{p\leq x\\ p\equiv a(\bmod c)}}e\left(\frac{2\sqrt{p}}{c}\right)\ll_{\varepsilon} x^{7/8+\varepsilon}.
$$

- In 2001, Iwaneic, Luo, Sarnak conjectured as Hypothesis S that the exponent can be improved from 7/8 to 1/2 for any $x \geq$ 1, $c \ge 1$, a with $(a, c) = 1$, and any $\varepsilon >$ θ .
- One can also consider a smoothed sum √ $\left(\frac{n}{2}\right)$

$$
S_q(X) = \sum_n a_n e\big(-2\sqrt{nq}\big)\varphi\big(\frac{n}{X}\big),\,
$$

with X and qX large, $\varphi \in C_c^\infty$ $C_c^\infty(1,2)$, with $\varphi(1)=\varphi(2)=0$, and $\varphi^{(j)}(t)\ll_j 1$ for $j\geq$ 0 and (a_n) is an arithmetically defined sequence of complex numbers satisfying

$$
a_n \ll n^{\varepsilon}, \varepsilon > 0.
$$

- In 2010, Ren and Ye showed the square root cancellation predicted by Hypothesis S is obstructed by a main term of size $X^{\frac{3}{4}}$ that we refer to as $resonance$ $barrier.$
- It is believed that one might be able to break the resonance barrier if the cusp form f is allowed to move.
- In this direction, Ye in 2022 proved the first known non-trivial bound for $S_X(f; \alpha, \beta)$

when the weight k of f tends to infinity with X .

• In this project we try to find a nontrivial bound considering 2 holomorphic cusp forms.

Existing Results

- \bullet Sums of the form $\sum_n \lambda_f(n) e(\alpha n^\beta) \varphi$ $\sqrt{\frac{n}{n}}$ X \setminus were first considered by Iwaniec-Luo-Sarnak (2000) for f a normalized Hecke eigenform for $SL(2,\mathbb{Z})$ with $\alpha = 2\sqrt{q}$ for $q \in \mathbb{Z}_+$ and $\beta = 1/2$.
- Ren-Ye (2010) investigated resonance for $SL(2, \mathbb{Z})$ holomorphic cusp forms with no restrictions on α and β .
- Sun-Wu (2014) showed the same results but for Maass cusp forms for $SL(2, \mathbb{Z})$.
- Ren-Ye (2014) gave resonance results for $SL(3, \mathbb{Z})$ Maass cusp forms.
- Ren-Ye (2016) studied resonance for $SL(m,\mathbb{Z})$ Maass cusp forms.
- Czarnecki (2016) showed $S_X(f,g,\alpha,\beta)$ when $\beta=1/4$ and α is close or equal to $\pm 4q^{\frac{1}{4}}$ 4 for positive integer q , the average has a main term of size $|\lambda_f(q)\lambda_g(q)|X^{\frac{1}{8}+\frac{1}{2}}.$ Otherwise, when α is fixed and $0 < \beta < \frac{1}{4}$ it decays rapidly.
- So in the case for the Rankin-Selberg L-function the ''resonance barrier'' that we would like to break is $X^{\frac{5}{8}}.$

Alternate Formulation

- Let H_k denote an orthogonal basis of Hecke eigenforms for the holomorphic forms of weight k of $SL(2, \mathbb{Z})$ where each form is normalized so that the first Fourier coefficient is equal to 1.
- Following Sarnak, for a non-negative test function $g_0 \in C^\infty(-1,1)$, $g_0(0) = 1$ we want non-trivial bound for

$$
\sum_{2|k_1} \sum_{2|k_2} g_0\left(\frac{k_1 - K_1}{L_1}\right) g_0\left(\frac{k_2 - K_2}{L_2}\right)
$$

$$
\times \sum_{f \in H_{k_1}} \sum_{g \in H_{k_2}} |S_X(f, g, \alpha, \beta)|^2.
$$

• Alternatively, we normalize

$$
\sum_{K_1L_1}^{K_2L_2}
$$
\n
$$
= K_1K_2 \sum_{2|k_1} \sum_{2|k_2} g_0 \left(\frac{k_1 - K_1}{L_1} \right) g_0 \left(\frac{k_2 - K_2}{L_2} \right)
$$
\n
$$
\times \sum_{f \in H_{k_1}} \frac{2\pi^2}{(k_1 - 1)L(1, Sym^2 f)} \sum_{g \in H_{k_2}} \frac{2\pi^2}{(k_2 - 1)L(1, Sym^2 g)}
$$
\n
$$
\times |S_X(f, g, \alpha, \beta)|^2
$$

allowing a negligible discrepancy bounded by $K_i^{-\varepsilon}$ and K_i^{ε} , $i=1,2$.

• Using Deligne's estimate in Ramanujan conjecture we obtain a trivial bound

 $S_X(f, g, \alpha, \beta) \ll X^{1+\varepsilon}$

where the implied constant is independent of f and g . This gives a trivial bound of $O(K_1L_1K_2L_2X^{2+\varepsilon})$ for $\sum_{K_1L_1}^{K_2L_2}$.

- Our goal is to break this trivial bound.
- Note:non-trivial bounds are known for $S_X(f,g,\alpha,\beta)$, f and g both fixed but not for their weights tending to infinity.

MAIN THEOREM

\n- (Gillespie-S-Ye)
\n- For
$$
j = 1, 2
$$
 assume $K_j^{\varepsilon} \leq L_j \leq K_j^{1-\varepsilon}$. Then
\n

$$
\sum_{K_1L_1}^{K_2L_2} K_{1L_1}^{K_2L_2} X^{1+\varepsilon} \text{ if } K_1L_1 \ge X^{1+\varepsilon} \text{ and } K_2 \ge X^{\frac{1}{2}+\varepsilon}
$$

\n
$$
\ll K_1^2 L_1 L_2 X^{1+\varepsilon} + \frac{X^{3+\varepsilon}}{K_1}
$$

\nif $K_1L_1, K_2L_2 \le X^{1+\varepsilon}, K_1 = K_2,$
\nand $K_1^2 L_1L_2 \ge X^{1+\beta+\varepsilon}.$

• First line gives non-trivial bounds for square moments of $S_X(f,g,\alpha,\beta)$ in both the f and g aspects. Since the number of terms in $\sum_{K_1L_1}^{K_2L_2}$ is $\asymp K_1L_1K_2L_2$ the average size of $S_X(f,g,\alpha,\beta)$ is $O(X^{\frac{1}{2}+\varepsilon})$ when K_1L_1 and K_2 are large.

• The second line gives a non-trivial bound for the single square moment

$$
\sum_{2|k_1} g_0\left(\frac{k_1 - K_1}{L_1}\right) \sum_{f \in H_{k_1}} |S_X(f, g, \alpha, \beta)|^2 \ll K_1 L_1 k_2 X^{1 + \varepsilon} + \frac{X^{3 + \varepsilon}}{k_2},
$$

when $L_2=K_2^\varepsilon$, $K_1L_1, K_2L_2\leq X^{1+\varepsilon}$, $k_2\geq$ $X^{\frac{1+\delta}{2}+\varepsilon}$, $K_1 \leq X^{1-\delta}$.

OVERVIEW OF THE PROOF

 \bullet Expanding $|S_X(f,g,\alpha,\beta)|^2$ and applying Petersson trace formula twice to $\sum_{K_1L_1}^{K_2L_2}$ we get

$$
K_1 K_2 \sum_{2|k_1} \sum_{2|k_2} g_0 \left(\frac{k_1 - K_1}{L_1} \right) g_0 \left(\frac{k_2 - K_2}{L_2} \right)
$$

\$\times \sum_{n} \sum_{m} e(\alpha n^{\beta} - \alpha m^{\beta}) \varphi \left(\frac{n}{X} \right) \bar{\varphi} \left(\frac{m}{X} \right)\$
\$\times \left(\delta(n, m) + 2\pi i^{k_1} \sum_{c_1 \ge 1} \frac{S(m, n, c_1)}{c_1} J_{k_1 - 1} \left(\frac{4\pi \sqrt{mn}}{c_1} \right) \right)\$
\$\times \left(\delta(n, m) + 2\pi i^{k_2} \sum_{c_2 \ge 1} \frac{S(m, n, c_2)}{c_2} J_{k_2 - 1} \left(\frac{4\pi \sqrt{mn}}{c_2} \right) \right)\$
=: $D_{00} + D_{01} + D_{10} + D_{11}.$

• Here $S(m, n, c)$ is the Kloosterman sum

$$
=\sum_{z \bmod c}^* e\left(\frac{mz+n\bar{z}}{c}\right).
$$

• The diagonal sum

$$
D_{00} = K_1 K_2 \sum_{2|k_1} \sum_{2|k_2} g_0 \left(\frac{k_1 - K_1}{L_1} \right) g_0 \left(\frac{k_2 - K_2}{L_2} \right)
$$

$$
\times \sum_n \left| \varphi \left(\frac{n}{X} \right) \right|^2
$$

has a trivial bound of $K_1L_1K_2L_2X$. •

$$
D_{11} = K_1 K_2 \sum_{2|k_1} \sum_{2|k_2} g_0 \left(\frac{k_1 - K_1}{L_1} \right) g_0 \left(\frac{k_2 - K_2}{L_2} \right)
$$

\$\times \sum_{n} \sum_{m} e(\alpha n^{\beta} - \alpha m^{\beta}) \varphi \left(\frac{n}{X} \right) \overline{\varphi} \left(\frac{m}{X} \right)\$
\$\times 4 \pi^2 i^{k_1 + k_2} \sum_{c_1 \ge 1} \frac{S(m, n, c_1)}{c_1} J_{k_1 - 1} \left(\frac{4 \pi \sqrt{mn}}{c_1} \right)\$
\$\times \sum_{c_2 \ge 1} \frac{S(m, n, c_2)}{c_2} J_{k_2 - 1} \left(\frac{4 \pi \sqrt{mn}}{c_2} \right).

 \bullet We write $\sum_{2\mid k_j} i^{k_j} g_0\Big(\frac{k_j-K_j}{L_j}\Big)$ L_j \setminus $J_{k_j-1}(x)$ s as oscillatory integrals and follow Sarnak, and Salazar-Ye to write their asymptotic expansions.

• We focus on the main terms in the expansions and obtain

$$
T_{11}^{\eta_1 \eta_2} = K_1 L_1 K_2 L_2 \sum_n \sum_m e(\alpha n^{\beta} - \alpha m^{\beta})
$$

\n
$$
\times \varphi(\frac{n}{X}) \bar{\varphi}(\frac{m}{X}) \sum_{c_j \leq \frac{X}{K_j^{1-\epsilon}L_j}} \frac{1}{c_1 c_2}
$$

\n
$$
\times \sum_{z_1 \mod c_1}^* e\left(\frac{m z_1 + n \bar{z}_1}{c_1}\right) \sum_{z_2 \mod c_2}^* e\left(\frac{m z_2 + n \bar{z}_2}{c_2}\right)
$$

\n
$$
\times h_1^{\eta_1}(m, n, dc_1) h_2^{\eta_2}(m, n, dc_2)
$$

\n
$$
\times e(\varphi_1^{\eta_1}(m, n, dc_1) + \varphi_2^{\eta_2}(m, n, dc_2)).
$$

where h^η_i $\frac{\eta}{j}$ s are weight functions and $\varphi_j^{\eta_j}$ $_j^{\prime\prime j}$ s are certain phase functions.

- We apply Poisson summation twice, for the n -sum and the m -sum and combine the two oscillatory integrals into a double integral that we bound using a two-dimensional second derivative test (Srinivasan).
- This gives us

$$
T_{11}^{\eta_1\eta_2}\ll \frac{X^{3+\varepsilon}}{K_1}
$$

• For other terms: We use a weighted first derivative test following McKee-Sun-Ye, after using Poisson summation on n (or, m) and obtaining an oscillatory integral. \bullet These bounds on $\sum_{K_{1}L_{1}}^{K_{2}L_{2}}$ also imply new non-trivial bounds on the single square moments

$$
\sum_{2|k_1} g_0\left(\frac{k_1 - K_1}{L_1}\right) \sum_{f \in H_{k_1}} |S_X(f, g, \alpha, \beta)|^2.
$$

Thank you!