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INTRODUCTION

e f and ¢ holomorphic cusp forms for SLy(Z)
of weights k; and ky respectively.
eFix 0 <8 <1 and a #0.

e © smooth with compact support in (1,2).
e Define ‘resonance sum’’

Sx(f,g,a,8) = Z)\f 5)@(%)

® These welghts correspond to the coefficients
from the Rankin-Selberg L-function

L(S, f X g) — C(28> Z )\f(n))\g(n)7

ns
n>1

absolutely convergent for Re(s) > 1.



e The goal is to examine the oscillatory
behavior of the coefficients As(n)A\,(n).

HYPOTHESIS S

e In 1976, Vinogradov proved

Z (2\[) <. 273t

p=w
p=a( mod c)

e In 2001, Iwaneic, Luo, Sarnak conjectured
as Hypothesis S that the exponent can
be improved from 7/8 to 1/2 for any z >
1, ¢>1, a with (a,¢) =1, and any & >

0.
e Jne can also consider a smoothed sum

S)(X) =D ane( = 2ymg) 0 (5):

with X and ¢X large, ¢ € C°(1,2), with
p(1) = (2) =0, and Y)(t) <; 1 for j >

0 and (a,) is an arithmetically defined
sequence of complex numbers satisfying

a, < n-, ¢>0.

e In 2010, Ren and Ye showed the square
root cancellation predicted by Hypothesis
S 1s obstructed by a main term of size

3
X171 that we refer to as resonance barrier.
e [t 1s believed that one might be able

to break the resonance barrier if the
cusp form f is allowed to move.

e In this direction, Ye in 2022 proved the
first known non-trivial bound for Sx(f;a,f)



when the weight k£ of f tends to infinity

with X.
e In this project we try to find a nontrivial

bound considering 2 holomorphic cusp forms.

EXISTING RESULTS

e Sums of the form z:nAwaeanﬁxp(%) were

first considered by Iwaniec-Luo-Sarnak
(2000) for f a normalized Hecke eigenform
for SL(2,7Z) with a = 2,/q for ¢ € Z,
and 3 =1/2.

e Ren-Ye (2010) investigated resonance for
SL(2,7Z) holomorphic cusp forms with no
restrictions on « and (3.

e Sun-Wu (2014) showed the same results
but for Maass cusp forms for SL(2,7Z).

e Ren-Ye (2014) gave resonance results for
SL(3,7Z) Maass cusp forms.

e Ren-Ye (2016) studied resonance for SL(m,Z)
Maass cusp forms.

e Czarnecki (2016) showed Sx(f,g,«,3) when

B =1/4 and o is close or equal to:i4q%
for positive integer ¢, the average has

a main term of size ]Afgﬁ)@(qﬂ)(%+%. Otherwise,
when o is fixed and O<</3<:i it decays
rapidly.

e S0 in the case for the Rankin-Selberg
L-function the ‘‘resonance barrier’’ that
we would like to break is X5.



ALTERNATE FORMULATION

e Let [ denote an orthogonal basis of Hecke
eigenforms for the holomorphic forms of

weight k of SL(2,7Z) where each form is

normalized so that the first Fourier coefficient
is equal to 1.

e Following Sarnak, for a non-negative test
function gy € C*(—1,1), ¢o(0) =1 we want
non-trivial bound for

ki1 — K, ko — Ko
ZZ 90( L )go( Lo )
2|k1 2|k9
X Z Z ‘Sx(f,g,&,ﬁﬂ?-
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e Alternatively, we normalize
>
KLy
k1 — Ky ko — Ky
=Ko 3 3 ()P )
1432 Z Z 90 i 90 I

2|k1 2|ko

o 21
sz (ki = DL, Sym?f) 2 (k2 = DLAL, Sym?g)

ey, gey,

x[Sx(f.g,a, )
allowing a negligible discrepancy bounded
by K, ° and K;, i =1,2.

e Using Deligne’s estimate in Ramanujan
conjecture we obtain a trivial bound

SX(fagaaaﬁ> < X1+6



where the implied constant is independent
of f and ¢g. This gives a trivial bound

of O<K1L1K2L2X2+€) for Zgﬁéf

e Jur goal is to break this trivial bound.

e Note:non-trivial bounds are known for
Sx(f,g,a,B8), f and g both fixed but not
for their weights tending to infinity.

MAIN THEOREM

e (Gillespie-S-Ye)
For j = 1,2 assume }{f < L, SQ_K?_g.
Then

D
KL,
& KL KoLy X' if KLy > X' and K, > X7+

3+e

K2L L Xl—l—E -
< K{Lils + K,

if KLy, KLy < X', Ky = Ko,
and K?L,L, > X1T0te,

e First line gives non-trivial bounds for
square moments of Sx(f,g,a,3) in both
the f and g aspects. Since the number

. KoLy .
of terms in E:K%ﬁ is =< K L1 K>5Ly the average

size of Sx(f,g,a,B) is O(X2*°) when KL
and Ky are large.



e The second line gives a non-trivial bound
for the single square moment

ki — K
ZQO( 1L1 1

2lky feH,

3+e¢

X
) Z ‘SX<fagaaaﬁ>|2 < K1L1k2X1+€+k—27

when L2 = KS, KlLl,KgLQ < X1+€, kQ Z
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XTJ”?, Kl < Xl—(S.

OVERVIEW OF THE PROOF

e Expanding |Sx(f,g,,3)]* and applying Petersson
KoLy

trace formula twice to ) ;7/” we get

KK Z Z go(k1 £1K1)go(k2 _QKQ)

L
2k 2[ks
X zn: %: e(an’ — ozm%go(%)@(%)
X (5(n, m) + 2mi™ Z Stm, m, 61>J/ﬂ—1 (M))

C
c1>1 1

(S, m) + 2 Y SR (V)

c>1

. Doo + D01 + D10 + DH.

e Here S(m,n,c) is the Kloosterman sum

_ Z*e(mz:nZ)

z modc




e The diagonal sum

Dy KlKQZZgO(kl K1) O(kz ;ZKQ)

o0k 2|ks

<X le(3)]

has a trivial bound of K {L{KsL-X.

Dy KlKQZZgO(kl K1> O(kz EQKQ)

olky 2l
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i
e lle write Z2|k i Jgo(

)Jk _1(x)s as oscillatory

integrals and follow Sarnak, and Salazar-Ye

to write thelr asymptotic expansions.



e We focus on the main terms in the expansions
and obtain

TP = KlLlKQLQZZG(O{n/B — am”)

X hi'(m, n, dei)hd*(m, n, des)

Xe(@?l <m7 n, dCl) + 907272 (ma n, d62>)~

where hgs are welght functions and @?s

are certain phase functions.
e We apply Poisson summation twice, for

the n—-sum and the m-sum and combine the
two oscillatory integrals into a double

integral that we bound using a two-dimensional

second derivative test (Srinivasan).
e This gives us

3+¢

" < N

e For other terms: We use a weighted first
derivative test following McKee-Sun-Ye,

after using Poisson summation on n (or,
m) and obtaining an oscillatory integral.



e These bounds on Ejgﬁf also imply new non-trivial
bounds on the single square moments

> (%) > 1Sx(f. g, B).
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Thank you!



