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1 Introduction.

Let Γ ⊂ G = Aut(H2) be a group of isometries of the hyperbolic plane H2

such that Σ = Γ\H2 is a surface of finite area. Then:

I. The geodesic flow is mixing on the unit tangent bundle T1(Σ) = Γ\G.
II. The sphere S(x, R) of radius R about a point x ∈ Σ becomes equidis-

tributed as R → ∞.
III. The number of points N(R) in an orbit Γv which lie within a hyper-

bolic ball B(p, R) ⊂ H2 has the asymptotic behavior

N(R) ∼ area(B(p, R))

area(Σ)
.

(See §2 for more detailed statements).

The purpose of this paper is to discuss results similar to those above
where the hyperbolic plane is replaced by a general affine symmetric space
V = G/H . This setting includes the classical Riemannian symmetric spaces
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(when H is a maximal compact subgroup) as well as spaces with indefinite
invariant metrics.

A simple non-Riemannian example is obtained by letting V be the space
of oriented geodesics in the hyperbolic plane. Then H = A, the group
of diagonal matrices in G = PSL2(R). In this case Γ\G/H is not even
Hausdorff.

This setting includes counting theorems for integral points on a large
class of homogeneous varieties (e.g. those associated to quadratic forms)
and allows us to prove some of the main theorems of [DRS] by elementary
arguments (see §6).

Statement of Results. Let G be a connected semisimple Lie group with
finite center, and let H ⊂ G be a closed subgroup such that G/H is an
affine symmetric space (cf. [F-J], [Sch]). This means there is an involution
σ : G → G such that H is the fixed-point set of σ:

H = {g : σ(g) = g}.

(By involution we mean a Lie group automorphism such that σ2 = id).
Let Γ ⊂ G be a lattice, i.e. a discrete subgroup such that the volume of

X = Γ\G is finite.
Assume further that Γ has dense projection to G/G′ for any positive-

dimensional normal noncompact Lie subgroup G′ ⊂ G. 1

Finally, assume that Γ meets H in a lattice: that is, the volume of Y =
(Γ ∩ H)\H is finite.

We may now state general results on mixing, equidistribution and count-
ing. The mixing theorem below is standard; the aim of this paper is to deduce
the equidistribution and counting theorems from it, using the geometry of
affine symmetric spaces.

Theorem 1.1 (Mixing) The action of G on X = Γ\G is mixing. That is,
for any α, β in L2(X),

∫

X

α(xg)β(x)dx →
∫

X
α
∫

X
β

m(X)

as g tends to infinity.

1A lattice is irreducible if it projects densely to G/G′ for any positive-dimensional

normal G′. Our assumption is a weak form of irreducibility which admits interesting

examples when G has a compact factor.
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Here the integrals and the volume m(X) are taken with respect to the
G-invariant Haar measure on X. A sequence of element gn ∈ G tends to
infinity if any compact set K ⊂ G contains only finitely many terms in the
sequence.

Proof. This well-known result is a consequence of the Howe-Moore theorem
[HM]; see also [Zim].

After passing to a finite cover we may assume that G = G0 × K, where
K is compact and G0 has no compact factors. It suffices to verify that the
action of G0 on L2(X) is mixing.

The action of G0 on L2(X) is a unitary representation ρ such that the
constant functions are the only invariant vectors. The integral above can be
interpreted as a “matrix coefficient” < ρ(g)α, β > for this representation.
Then mixing follows from decay of matrix coefficients for irreducible unitary
representations of reductive algebraic groups [HM, Theorem 5.1]. (This ref-
erence treats only algebraic groups, but G0 is a finite cover of such a group
since its center is finite.)

Theorem 1.2 (Equidistribution) The translates Y g of the H-orbit

Y = (Γ ∩ H)\H
become equidistributed on X = Γ\G as g tends to infinity in H\G. That is,

1

m(Y )

∫

Y g

f(h)dh → 1

m(X)

∫

X

f(x)dx

as g leaves compact subsets of H\G.

Here the measure dh/m(Y ) on Y g is the translate by g of the unique H-
invariant probability measure on Y .

To state the theorem on counting points in an orbit, we first isolate some
properties of the sets used for counting. Let Bn ⊂ G/H be a sequence of
finite volume measurable sets such that the volume of Bn tends to infinity.

Definition. The sequence Bn is well-rounded if for any ǫ > 0 there exists
an open neighborhood U of the identity in G such that

m(U · ∂Bn)

m(Bn)
< ǫ

for all n.
It is easy to verify:
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Proposition 1.3 A sequence is well-rounded if and only if for any ǫ > 0
there is a neighborhood U of id ∈ G such that for all n,

(1 − ǫ)m

(
⋃

U

gBn

)
< m (Bn) < (1 + ǫ)m

(
⋂

U

gBn

)
.

That is, Bn is nearly invariant under the action of a small neighborhood
of the identity.

Theorem 1.4 (Counting) Let V = G/H be an affine symmetric space,
and let v denote the coset [H ]. For any well-rounded sequence, the cardinality
of the number of points of Γv which lie in Bn grows like the volume of Bn:
asymptotically,

|Γv ∩ Bn| ∼
m((Γ ∩ H)\H)

m(Γ\G)
m(Bn).

Normalization of measures. In the statement of the counting theorem,
measures are normalized so that Haar measure on G is the product of the
measure on H with that on G/H .

Outline of the paper. A crucial link in the logic above is the wavefront
lemma (Theorem 3.1 below), which controls the geodesic flow on an affine
symmetric space. In §2 we discuss the relationship between mixing, equidis-
tribution and counting in the setting of the hyperbolic plane. The geometric
intuition of negative curvature, transparent in this setting, leads to the wave-
front lemma. In §3 we prove the wavefront lemma for SLn(R)/K and deduce
the equidistribution theorem. The general affine symmetric space is treated
in §4.

In §5 equidistribution is used to prove the counting theorem for well-
rounded sets. The hypothesis of well-roundedness is implicitly verified in the
course of the study of integral points on homogeneous varieties in [DRS]; this
connection is made explicit in §6. Finally §7 contains some results beyond
the affine symmetric setting and some open questions.

We would like to thank Marc Burger, Zeev Rudnick,Peter Sarnak and the
referee for useful comments.

2 Examples in the hyperbolic plane

In this section we sketch the connection between mixing, equidistribution
and counting on hyperbolic surfaces. This relation is fairly well-known and
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appears already in the thesis of Margulis (cf. [Mg], which contains a gener-
alization of Theorem 2.2 below).

Let Σ = Γ\H be a hyperbolic surface of finite volume, presented as the
quotient of the hyperbolic plane H by a lattice

Γ ⊂ G

in the group G = PSL2(R) of hyperbolic isometries. Let T1(Σ) denote the
unit tangent bundle to Σ. The geodesic flow

gt : T1(Σ) → T1(Σ)

transports a vector distance t along the geodesic to which it is tangent.

I. There is a natural invariant measure µ on the unit tangent bundle,
which is the product of angular measure on the fiber with area measure on
the base. With respect to this measure, the geodesic flow is mixing: for any
α and β in L2(T1(Σ), µ), we have

lim
t→∞

∫

T1(Σ)

α(x)β(gt(x)) dµ(x) →
∫

α dµ
∫

β dµ∫
1dµ

.

Mixing was proved for finite volume hyperbolic surfaces by Hedlund
[Hed2]; (see also [Hed1]). It is also a special case of Theorem 1.1, since
T1(Σ) can be identified with the space Γ\G, and the geodesic flow with the
action of the noncompact subgroup A of diagonal matrices.

II. The equidistribution of spheres on Σ follows easily from mixing. First,
consider a point p on Σ, and let K ⊂ T1(Σ) denote the preimage of x under
under the fibration T1(Σ) → Σ; that is, K consists of vectors lying over x and
pointing in every possible direction. Then it is clear that the image gt(K)
under the geodesic flow consists of all vectors normal to the immersed sphere
S(p, t) ⊂ Σ.

Now replace K by an open set U , consisting of the vectors lying over a
small open ball B(p, ǫ) and pointing in all directions. It is easy to see that
gt(B(p, ǫ)) consists of vectors (a) lying over an ǫ-neighborhood of S(p, t) and
(b) nearly normal to the sphere. Assertion (a) just comes from the triangle
inequality, while (b) is a feature of negative curvature. Indeed, the spread
of the vectors from the normal is bounded by the apparent visual angle of
B(p, ǫ) as seen from distance t, which goes to zero not only in hyperbolic
space but in any space of nonpositive curvature.
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The fact that gt(U) remains close to gt(K) is a special case of the wave-
front lemma, to be presented in §3. From it we can deduce the equidistribu-
tion of spheres:

Theorem 2.1 For any compactly supported continuous function α on Σ,
and any point p, the average of α over the sphere S(p, t) tends to the average
of α over Σ as t tends to infinity.

Here the average over the sphere is taken with respect to linear measure.

Proof. First pull α back to a function α(x) on the unit tangent bundle (by
taking it to be constant on fibers.) Then the average of α over the sphere
of radius t is the same as its average over gt(K), the lift of the sphere to
the tangent bundle. By uniform continuity, this is nearly the same as the
average of α over gt(U). But this second average is equal to

∫
T1(Σ)

χU(x)α(gt(x))dµ
∫

T1(Σ)
χU (x)dµ

.

By mixing, as t → ∞ the quantity above tends to the average of α(x) over
T1(Σ), which is the same as the average of α over Σ.

Remark. This result is a special case of Theorem 1.2 with G = PSL2(R)
and H = K = SO2(R)/{±I}. Indeed that theorem gives the stronger con-
clusion that the sphere, lifted by its unit normal vectors, becomes equidis-
tributed in T1(Σ). See [Ran] for another proof of the equidistribution of
spheres.

III.1. Let N(R) denote the number |Γv ∩ B(p, R)| of points in the orbit
Γv which lie within distance R of a point p in the hyperbolic plane. See
Figure 1 for an example of such an orbit.

We now show that Theorem 2.1 easily gives the asymptotic behavior of
N(R).

Theorem 2.2 As R tends to infinity,

N(R) ∼ area(B(p, R))

area(Σ)
.
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Figure 1. Orbit of a point in the hyperbolic plane.
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Remark. The intuition behind the estimate for N(R) is the following. Tile
the hyperbolic plane by translates of a fundamental domain for the action of
Γ which contains v in its interior. The tiles meeting Γv ∩ B(p, R) form an
approximate covering of the ball. Thus their number should be proportional
to the area of B(p, R) divided by the area of a single tile.

However, the tiling is likely to be uneven near the boundary of B(p, R).
In hyperbolic space, the area of a unit neighborhood of the boundary is com-
parable to the area of the whole ball, so these edge effects must be studied.
Mixing intervenes to show that the tiles appear more or less randomly along
the edge of the ball, and that the area estimate is correct.

Example. Figure 1 shows the 598 points in an orbit of Γ = PSL2(Z) which
lie in B, the region farther than 0.01 from the boundary of the unit disk. For
comparison, the area of PSL2(Z)\H is π/3, the area of B is 618.91..., so

area(B)

area(Σ)
= 591.02...

is a reasonable estimate for the cardinality of Γv ∩ B.

Proof of Theorem 2.2. For any point q in H, denote by [q] the image of q on
Σ = Γ\H. Let α(x) be a bump function of integral one supported in the ball
B([v], ǫ), and let βR(x) denote the the number of distinct geodesics of length
less than R joining x to [p]. Equivalently, βR is the indicator function (with
multiplicities) of the immersed disk of radius R about [p], or the pushforward
of the indicator function of B(p, R).

Then it is easy to see that

N(R − ǫ) ≤
∫

B(p,R)

α̃(x)dx =

∫

Σ

α(x)βR(x)dx ≤ N(R + ǫ),

where α̃ is the pullback of α to a function on H. Now the measure βR(x)dx is
a continuous convex combination of linear measures on the spheres S([p], t)
as t ranges from zero to R. Since the spheres are becoming equidistributed,
and

∫
Σ

α = 1, the integral above is asymptotic to

area(B(p, R))

area(Σ)
∼ π exp(R)

area(Σ)
.

It follows that any limit as R tends to infinity of

N(R) area(Σ)

area(B(p, R)
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lies in the interval [exp(−ǫ), exp(+ǫ)]. Since ǫ was arbitrary, the limit exists
and is equal to one.

Remarks.
It is easy to show that for any Rn → ∞, the balls Bn = Bn(p, Rn) are

well-rounded for the action of G on H. The counting result above is thus a
special case of Theorem 1.4.

Figure 2. A closed geodesic, lifted to the hyperbolic plane.

III.2. Here is a counting problem which leads to a non-Riemannian sym-
metric space.

Let ℓ be a geodesic in H with stabilizer H , and suppose H meets Γ in a
subgroup isomorphic to Z. Equivalently, ℓ descends to a closed geodesic

L = (Γ ∩ H)\ℓ
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on Σ. The orbit Γℓ is a locally finite collection of geodesics in H; see Figure
2 for an example.

Let N(R) denote the number of geodesics in the orbit Γℓ ⊂ H which
intersect the ball B(p, R).

Theorem 2.3 As R → ∞,

N(R) ∼ 1

π

length(L)

area(Σ)
area(B(p, R))

*

*

*

*

*
*

*
*

*

*

*

*

*

[P]

L

L’

Figure 3. The covering space Σ′ → Σ associated to a closed geodesic.

Example. Let Γ = Γ(2) ⊂ PSL2(Z) be the free subgroup of index six, and
consider the geodesic stabilized by < g > where

g =

(
1 4

2 9

)
.
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The length of L is log(49 + 20
√

6) = 4.584..., and the area of Σ = Γ\H is
2π. Figure 2 shows the 145 lifts of L which meet B, again the region farther
than 0.01 from the boundary of the unit disk. For comparison,

1

π

length(L)

area(Σ)
area(B) = 143.76...

Remark. There is an important difference between orbits of points and
orbits of geodesics under the action of Γ. While the orbits of points are
classified by the Riemannian manifold Σ = Γ\G/K, the orbits of geodesics
are classified by Z = Γ\G/H which is not even Hausdorff. This is not too
surprising, since Z is intrinsically the space of geodesics on Σ, and almost
every geodesic is dense in T1(Σ).

Nevertheless we can carry out a counting estimate for the orbit of a
geodesic which is closed on Σ by methods similar to those of Theorem 2.2.
(The counting problem does not usually make sense for geodesics which are
not closed, since Γℓ may not be locally finite.)

We begin with an equidistribution result analogous to Theorem 2.1:

Theorem 2.4 The parallel Lt at distance t from a closed geodesic L on Σ
becomes equidistributed as t → ∞.

Proof. Let L̃ denote a lift of L to a continuous family of vectors in T1(Σ)

normal to L. Then L̃t = gt(L̃) is a similar lift of the parallel curve Lt at
distance t from L.

As in the proof of the equidistribution of spheres, we may thicken L̃ to
an open set U ⊂ T1(Σ), consisting of vectors making angle ǫ with the normal
to Lt for t ∈ [−ǫ, ǫ]. By mixing, gt(U) becomes equidistributed in T1(Σ) as t
tends to infinity.

The main geometric point is that gt(U) lies close to L̃t for all t. This is a
property of negative (not just nonpositive) curvature. Namely, if a geodesic
segment of length t rests with one endpoint making angle π − δ on L, the
other endpoint rests on Lt+δ′ where δ′ → 0 as δ → 0 (independent of t).

Therefore a uniformly continuous function has nearly the same average
over U as over L̃t. It follows that L̃t and Lt both become equidistributed as
t tends to infinity.

11



Next we establish a more natural variant of Theorem 2.3.
The closed geodesic L ⊂ Σ determines a cyclic subgroup of π1(Σ); let

π : Σ′ → Σ

denote the corresponding covering space. Then L lifts isometrically to a
geodesic L′ on Σ′. Let P ′ ⊂ Σ′ denote the set π−1([p]) = (Γ ∩ H)\Γp.

See Figure 3, in which P ′ is depicted by ∗’s on Σ′.
Let B(L′, R) denote the cylinder of points on Σ′ at distance at most R

from L′.

Theorem 2.5 As R → ∞,

N(R) ∼ area(B(L′, R))

area(Σ)
.

This version can also be deduced from Theorem 1.4.

Proof. It is easy to see that the following quantities are all equal to N(R):

(a) the number of distinct geodesics in Γℓ ∩ B(p, R);
(b) the number of geodesics normal to L, of length at most R, joining L

to [p]; and
(c) the number of points in P ′ ∩ B(L′, R).

For example, a shortest path connecting p to a geodesic γℓ as in (a)
projects to a path on Σ connecting L to [p] as in (b). Conversely a path on
Σ as in (b) can be lifted to H so that p lies over [p]. Each lift or projection
factors through Σ′, proving equality with (c).

The idea of the estimate is easily explained in terms of (c). Pick a cell of
full measure on Σ with [p] in its interior, and consider its preimages on Σ′.
These provide a tiling with one tile for each point in P ′. The tiles meeting
P ′∩B(L′, R) approximately cover B(L′, R), so their number should be about
area(B(L′, R))/ area(Σ).

The proof follows the same lines as Theorem 2.2, using the equidistri-
bution of parallels of L. Let α denote a bump function on Σ supported in
an ǫ-neighborhood of [p]. Let βR(x) denote the number of distinct geodesics
joining x to L, perpendicular to L and of length less than or equal to R.
Equivalently, βR(x) is the indicator function (with multiplicities) of the im-
mersed cylinder of radius R about L, or the pushforward of the indicator
function of B(L′, R) on Σ′.
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By (b) or (c) above,

N(R − ǫ) ≤
∫

T1(X)

α(x)βR(x)dx ≤ N(R + ǫ).

The measure βR(x)dx can be thought of as a continuous linear combination
of linear measures on the curves Lt parallel to L, for −R ≤ t ≤ R. Since the
parallels are becoming equidistributed and

∫
βR(x)dx = area(B(L′, R)), the

integral above is asymptotic to

area(B(L′, R))

area(Σ)
∼ length(L) exp(R)

area(Σ)
.

It follows that the estimate for N(R) is correct to within a factor of 1 ± ǫ.
Since ǫ was arbitrary the proof is complete.

Proof of Theorem 2.3. A calculation in the hyperbolic metric shows that

area(B(L′, R)) ∼ length(L) area(B(p, R))

π
.

Quadratic forms. To conclude, we describe the Minkowski model for hy-
perbolic space, which connects orbits with a linear representation of G and
provides a common setting for the study of points and geodesics on H. (See
[GHL, p. 118].)

Let R2+1 denote a three dimensional real vector space equipped with the
indefinite quadratic form

Q(x, y, z) = x2 + y2 − z2.

This form also provides a Lorentz metric on the tangent space to each point
of R2+1.

Let SO(2, 1) be the group of orientation-preserving linear transformations
which preserve this quadratic form, and let G be the connected component
of the identity in SO(2, 1). Some of the orbits of G are pictured in Figure 4.

The locus Q(v) = −1, sometimes called the sphere of imaginary radius, is
a two-sheeted hyperboloid, a single sheet of which is a model for the hyper-
bolic plane H. Indeed, Q induces a complete Riemannian metric of constant
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Figure 4. The light cone, and two hyperboloids
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curvature −1 on each sheet, with respect to which G is the full group of
orientation-preserving isometries. (Note that G, being connected, does not
interchange the two sheets).

The locus Q(v) = 1, the one-sheeted hyperboloid, is naturally identified
with the space of all (oriented) geodesics in H; we will denote it by G.
Geodesics are parameterized by G as follows. Let v⊥ be the orthogonal
subspace of v with respect to the inner product Q(v, w) associated to Q.
Then a point v ∈ G determines a hyperplane v⊥ through the origin, which
meets H in a unique geodesic ℓ(v). All geodesics are so obtained.

The form Q induces a Lorentz metric of type (1, 1) on G which is invariant
under the transitive action of G. Since this metric is indefinite, there is no
reason that a discrete subgroup of G should act properly discontinuously on
G, and indeed almost every Γ-orbit on G is dense.

The one-sheeted hyperboloid is the simplest example of a non-Riemannian
symmetric space. It can be presented as G/H where H is the stabilizer of a
geodesic ℓ in H. Since H consists exactly of those isometries which commute
with reflection through ℓ, G/H is an affine symmetric space.

For completeness, we remark that the locus Q(v) = 0 is called the light
cone, since light rays move along null geodesics in special relativity. With
its vertex removed, the upper half of the light cone is also a homogeneous
space for G; it parameterizes horocycles in the hyperbolic plane, by letting
v correspond to

{w : Q(v, w) = −1} ∩ H.

(See §7 for counting and mixing on the light cone, which is not an affine
symmetric space.)

By symmetry considerations, the Euclidean ball

B(R) = {(x, y, z) : x2 + y2 + z2 < R2}
meets H in a hyperbolic ball B(p, t(R)) centered at p = (0, 0, 1). Similarly,
a point v on the one-sheeted hyperboloid Q(v) = 1 lies in the Euclidean
ball B(R) if and only if the geodesic ℓ(v) passes through the hyperbolic ball
B(p, t(R)). Thus the counting theorems 2.2 and 2.3 also address instances
of the following:

Problem: Estimate the number of points in an orbit Γv which
meet the Euclidean ball B(R), where Γ is a lattice in a Lie group
G acting linearly on a real vector space.

We will return to this problem (which forms the subject of [DRS]) in §6.
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3 Equidistribution: the wavefront lemma

As we will see below, associated to an affine symmetric space G/H is a
decomposition G = HAK generalizing the polar decomposition KAK for
a Riemannian symmetric space. Given this decomposition, the following
lemma carries most of the proof of the equidistribution theorem.

Theorem 3.1 (The wavefront lemma) For any open neighborhood U of
the identity in G, there exists an open set V ⊂ G such that

HV g ⊂ HgU

for all g in AK.

Geometrically, this lemma asserts that the translate of a slightly thickened
copy of H remains, like a focused wavefront, near a single H-orbit. Assuming
this, we can complete the:

Proof of Theorem 1.2(Equidistribution). Let X = Γ\G, Y = (Γ ∩
H)\H , and let α(g) be a compactly supported continuous function on X.
Let gn be a sequence of elements of G tending to infinity in H\G. We need
to show that

1

m(Y gn)

∫

Y

α(h)dh → 1

m(X)

∫

X

α(g)dg

as n tends to infinity.
Since G = HAK, we can assume that the gn lie in AK. Given ǫ > 0,

choose an open neighborhood U of the identity in G such that |α(gu)−α(g)| <
ǫ for all u in U . By the wavefront lemma, there is an open neighborhood V
of the identity in G such that HV g ⊂ HgU for all g in AK.

By mixing (Theorem 1.1),

1

m(Y V )

∫

Y V gn

α(g)dg =
1

m(Y V )

∫

Γ\G

χY V (g)α(ggn)dg → 1

m(X)

∫

X

α(g)dg

as gn tends to infinity, where χY V is the indicator function of Y V . Thus
there is an N such that the integrals above differ by at most ǫ for all n > N .

We now analyze the integral over Y V gn in light of the wavefront lemma.
Since Y is an H-orbit on X, the restriction of Haar measure on X to Y V gn

is a continuous linear combination of translates of Haar measure on Y by
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elements of V gn. By the wavefront lemma, Y V gn ⊂ Y gnU , so the integral
above lies within the convex hull of the quantities

1

m(Y )

∫

Y gnu

α(h)dh =
1

m(Y )

∫

Y gn

α(hu−1)dh

as u ranges over U . By the choice of U (i.e. by uniform continuity of α),
each integral above differs by at most ǫ from

1

m(Y )

∫

Y gn

α(h)dh,

so ∣∣∣∣
1

m(Y )

∫

Y gn

α(h)dh − 1

m(X)

∫

X

α(g)dg

∣∣∣∣ < 2ǫ

for all n > N . These two quantities therefore converge as n → ∞.

To explain the proof of the wavefront lemma, we first treat a simple case
that carries all the main ideas.

Let ei be a basis for Rn. Denote by

G : the group SLn(R) of orientation-preserving linear transfor-
mations of Rn;

K : the maximal compact subgroup SOn(R) of G, consisting of
transformations preserving the Euclidean norm

∣∣∣
∣∣∣
∑

αiei

∣∣∣
∣∣∣
2

=
∑

α2
i ;

A : the maximal abelian subgroup consisting of diagonal matrices
with respect to this basis; and by

N : the maximal unipotent subgroup consisting of upper-triangular
matrices with nii = 1 along the diagonal.

We recall two structure theorems for G (see [Kn, V.2, V.4]):
(a) The polar decomposition G = HAK. This decomposition is not

unique in general (consider K = HK), but every element of G can be so fac-
tored; this is the property we will use. Even though H = K, we have denoted
them by separate letters because the HAK decomposition will generalize to
affine symmetric spaces.

17



(b) The Iwasawa decomposition G = HAN . We will use the fact that the
multiplication map H × A × N → G is a diffeomorphism near the identity,
so that every small g can be factored as han with h, a and n small. This is
immediate from the the fact that

h ⊕ a ⊕ n = g,

i.e. the Lie algebras of H , A and N span that of G. In reality every element of
G admits a unique HAN decomposition, as follows from the Gram-Schmidt
process for constructing an orthonormal basis.

Crucial to the proof is the following dynamical relation between A and
N .

Lemma 3.2 (Contraction of N) . Let a ∈ A be a diagonal matrix with
decreasing entries (|ajj| ≤ |aii| whenever j > i). Then conjugation by a
contracts N , in the sense that

|(a−1na)ij | ≤ |nij |

for any n in N .

Proof. If j ≥ i, then |ajj/aii| ≤ 1, so

|(a−1na)ij | = |a−1
ii nijajj| ≤ |nij |;

while if j < i, nij = 0.

Corollary 3.3 There are arbitrarily small neighborhoods U of the identity
in N such that a−1Ua ⊂ U .

We now prove the wavefront lemma for the special case H = K. Since
K is the fixed-point set of the Cartan involution θ(g) = (gt)−1, K\G is a
symmetric space.

Proof of Theorem 3.1 for G = SLn(R), H = K.
Let g be an arbitrary element of AK. For the moment, assume that g is

an element of A with decreasing diagonal entries, as in the lemma above.
Choose neighborhoods Va and Vn in A and N such that VaVn ⊂ U and

such that g−1Vng ⊂ Vn. Let V = HVaVn. Then

HV g = HVagg−1Vng ⊂ HgVaVn ⊂ HgU
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as required. (Note that g commutes with Va since A is abelian.)
This argument produces a V which works for g in A with decreasing

diagonal entries. Now for an arbitrary g in A, there is a permutation of
the basis for Rn such that the diagonal entries of g are decreasing; all other
considerations being natural, there is a V which works for this type of g as
well. Since the number of such permutations is finite, we can intersect these
V to obtain a neighborhood which works simultaneously for all elements of
A.

To complete the proof, we must treat the case of an arbitrary element of
AK. This case follows easily from compactness of K. First, choose U ′ ⊂ U
such that k−1U ′k ⊂ U for all element of K. Choose V such that HV a ⊂
HaU ′ for all a in A. Then for any g = ak,

HV g = HV ak ⊂ HaU ′k = Hakk−1U ′k ⊂ HakU = HgU.

Remark on unipotent actions. The equidistribution theorem of this
section can also be studied in light of the general theory of invariant measures
on homogeneous spaces. The natural algebraic measure µg on (Γ∩H)\Hg ⊂
Γ\G is invariant under g−1Hg, so (informally speaking) as g → ∞ any
limiting measure ν is invariant under a limiting Lie subgroup H = lim g−1Hg.
If H contains a unipotent subgroup, then recent work of Ratner places strong
restrictions on the possibilities for ν (see [Rat1], [Rat3], [Rat2], [Rat4]).

This idea is quite transparent in the hyperbolic plane: while a large sphere
is invariant under a conjugate g−1Kg of a fixed compact group K, as the
center tends to infinity the sphere converges to a horocycle, invariant under
the unipotent subgroup N .

Rather than pursuing this direction, we have relied on the simpler mixing
result and the geometry of affine symmetric spaces.

4 Structure of affine symmetric spaces

In this section we establish the HAK decomposition and the wavefront
lemma for general affine symmetric spaces G/H . We begin with some struc-
ture theorems, following [Sch].

Let g denote the Lie algebra of G, and let σ : G → G be the involution
whose fixed points are H . The differential of σ at the identity gives a linear

19



involution (which we denote by the same letter) σ : g → g. Writing g as a
direct sum of σ-eigenspaces, we obtain the decomposition g = h ⊕ q, where
σ|h = +1 and σ|q = −1. Then h is the Lie algebra of H .

One can construct a Cartan involution θ of G which commutes with the
affine symmetric involution σ [Sch, Prop 7.1.1]. Then the Lie algebra of G
may also be written g = k ⊕ p, where θ|k = +1 and θ|p = −1. Since θ is a
Cartan involution, k is the Lie algebra of a maximal compact subgroup K.

The linear map
adX : g → g

is defined, for each X in g, by adX(Y ) = [X, Y ]. For semisimple Lie algebras,
it is a standard fact [Kn, Section 1.2.] that

< X, Y > = − tr(adX adθ(Y ))

is an inner product on g, with respect to which adX is self-adjoint for all X
in p.

To proceed further, we briefly recall the root space decomposition of g

(cf. [Kn, Ch.4]).
Choose a maximal abelian subspace a ⊂ p∩q. Then a is the Lie algebra of

an abelian subgroup A, and the exponential map a → A is a diffeomorphism.
The mappings adZ for Z in a are commuting and self-adjoint. Therefore there
is a basis for g with respect to which all adZ are diagonal. The roots are a
finite set Σa ⊂ a∗ (the dual space of a) such that for each Z,

< α(Z) : α ∈ Σa >

enumerates the eigenvalues of adZ . The root space (eigenspace) of the root
α is denoted gα. Roots and root spaces are characterized by the equation:

[Z, Xα] = α(Z)Xα

for all Xα ∈ gα and for all Z ∈ a. The Lie algebra g is a direct sum of root
spaces.

Next we choose a system of positive roots. The hyperplanes {Z|α(Z) = 0}
for α ∈ Σa divide a into finitely many open regions called Weyl chambers.
Pick a Weyl chamber C. The positive roots Σ+

a consist of those α for which
α(C) > 0. (Of course the space of positive roots depends on the choice of C.)
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Let n be the linear span of the positive root spaces; it is the Lie algebra
of a (unipotent) subgroup N ⊂ G. Let n̄ denote the span of the negative
root spaces, and let g0 be the zero eigenspace of the adZ . Then

g = n ⊕ g0 ⊕ n̄,

because every root is either positive, negative or zero on a given Weyl cham-
ber.

Remark. In the case of SLn(R), A can be taken to be the group of diagonal
matrices. There are n! Weyl chambers, each corresponding to an ordering of
the standard basis for Rn. The matrices of A with strictly decreasing diagonal
entries form the exponential of a Weyl chamber, for which the corresponding
unipotent subgroup N consists of upper triangular matrices.

Proposition 4.1 (Contraction of N) Let C be a Weyl chamber and let N
be the corresponding unipotent subgroup. Then there exist arbitrarily small
neighborhoods U of the identity in N such that a−1Ua ⊂ U for all a in exp(C).

Proof. Let ca : N → N be the conjugation map n → ana−1; this is an
automorphism of N . Since exp : n → N is a group isomorphism, it suffices
to verify contraction on the level of the Lie algebra n of N .

To this end, let
Ad(a) : n → n

denote the differential of ca at the identity. For any X ∈ n, we may write

X =
∑

α∈Σ+
a

xαXα

where Xα lies in gα.
Now write a = exp(Z) where Z lies in the closure of the Weyl chamber

C. By the well-known identity Ad(exp(Z)) = exp(adZ) [Kn, Prop. A.111.],
we may write

Ad(a−1)X =
∑

α∈Σ+
a

xα Ad(a−1)(Xα)

=
∑

α∈Σ+
a

xα exp(− adZ)Xα

=
∑

α∈Σ+
a

xα exp(−α(Z))Xα.
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But α(Z) ≥ 0 for all α ∈ Σ+
a . Therefore Ad(a−1) contracts a product neigh-

borhood U ′ of the identity in n, which can be taken to be arbitrarily small.
Since ca−1(exp(X)) = exp(Ad(a−1)X)), we have a−1Ua ⊂ U .

Next we state two structure theorems for G.

Proposition 4.2 (HAK decomposition) The map

H × A × K → G

given by (h, a, k) → hak is surjective.

This proposition is well-known; see [Sch, Proposition 7.1.3.] and [F-J,
Corollary 1.4.] for mild variants.

Now let
M = {m ∈ K : ma = am for all a in A}

denote the centralizer of A in K.

Proposition 4.3 (HMAN decomposition) The map

H × M × A × N 7−→ G

given by (h, m, a, n) 7→ hman is an open mapping in a neighborhood of the
identity.

This proposition is a local version of the Iwasawa decomposition and
it is also well-known; see [Sch, Prop. 7.1.8(ii)]. Global properties of this
decomposition are discussed in [Mat1] and [Mat2].

The HAK decomposition was assumed above to deduce Theorem 1.2
(Equidistribution) from the wavefront lemma. The HMAN decomposition
will be used below to complete the general proof of the wavefront lemma.

For completeness we sketch the proof of these two propositions.

Definition. A connected subgroup G0 of a Lie group G is reductive if it is
stable under a Cartan involution θ of G.

Let g0 = k0 ⊕ p0 denote the decomposition of the Lie algebra of G0 into
+1 and −1 eigenspaces of θ respectively. Then k0 is the Lie algebra of a
maximal compact subgroup K0 of G0.
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Proposition 4.4 (KAK decomposition) Let G0 be a reductive group, a0

a maximal abelian subspace of p0, and let A0 = exp(a0). Then

G0 = K0A0K0.

See [Kn, Theorem 5.20.]

Sketch of the HAK decomposition. Let g be an element of G. By [Sch,
Prop. 7.1.2.], the map

(p ∩ h) × (p ∩ q) × K → G

given by
(X, Y, k) 7→ exp(X) exp(Y )k

is surjective. Thus we can write

g = exp(X) exp(Y )k

where exp(X) ∈ H and k ∈ K. It remains to express exp(Y ) in the form
h0a0k0.

Let g0 = (h ∩ k) ⊕ (p ∩ q). Then Y lies in g0. Since θ and σ commute, θ
stabilizes g0, so g0 is the Lie algebra of a connected reductive subgroup G0

of G.
The eigenspace decomposition of g0 with respect to θ is just the restriction

of that of g, so
k0 = k ∩ g0 = h ∩ k

and
p0 = p ∩ g0 = p ∩ q.

Thus we may take K0 = H ∩ K and A0 = A in the KAK decomposition
G0 = K0A0K0.

We may therefore write

exp(Y ) = h0a0k0

where a0 lies in A and both h0 and k0 lie in H ∩ K. Then

g = exp(X)h0a0ak0k

expresses g in the form HAK.
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Sketch of the HMAN decomposition.
It suffices to show that

h + m + a + n = g,

since this implies the map H × M × A × N → G is a submersion at the
identity, and therefore open.

To prove this, rewrite g as

g = n ⊕ g0 ⊕ n̄.

Since n already appears, it suffices to show that n̄ and g0 lie in the span of
n, h, m and a.

First note that
σ(n) = n̄.

Indeed, σ(Z) = −Z for all Z in a, so σ(gα) = g−α. Thus σ exchanges the
positive and negative root spaces, and therefore n and n̄.

From this it follows that
n̄ ⊂ h + n,

for if X lies in n̄, then

X = (X + σ(X)) − σ(X),

and X + σ(X) is in h, while σ(X) ∈ n.
It remains to show that

g0 ⊂ m + a + h.

Recall that g0 consists exactly of those X with [Z, X] = 0 for all Z in a.
Given X in g0, we may write

X =
1

2
(X + θ(X)) +

1

2
(X − θ(X))

where θ(X) and σ(X) are also in g0, since each involution stabilizes a. Then
X + θ(X) lies in k ∩ g0, which is exactly the Lie algebra m of the centralizer
of A in K.

We claim that

Y =
1

2
(X − θ(X))
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lies in h + a. To see this, write

Y =
1

2
(Y + σ(Y )) +

1

2
(Y − σ(Y )).

Then Y +σ(Y ) lies in h, and Y −σ(Y ) lies in p∩q∩g0; in particular Y −σ(Y )
commutes with all of a. But a is a maximal abelian subspace of p ∩ q, so
Y − σ(Y ) ∈ a.

We can now complete the:

Proof of Theorem 3.1 (The wavefront lemma). Given the preliminaries
above, the proof follows the same lines as that for SLn(R).

We are given that g lies in AK; for the moment assume g lies in A. Then
g belongs to exp(C) for some Weyl chamber C. Let N be the corresponding
unipotent subgroup, so that the contraction Lemma 4.1 holds. By the HMAN
decomposition, there exist neighborhoods Vm, Va and Vn in M , A and N
respectively, such that VmVaVn ⊂ U and g−1Vng ⊂ Vn for g ∈ exp(C̄).

Let V = HVmVaVn. Since M and A commute,

HV g = HVmVaVng

= HgVmVa(g
−1Vng)

⊂ HgVmVaVn

⊂ HgU.

Thus we have produced a V which works for all g in exp(C̄). Since the
number of Weyl chambers is finite, we may intersect these V ’s to obtain a
neighborhood which works simultaneously for all g ∈ A.

We now treat the general case of an element g = ak lying in AK. Because
K is compact, we can find U ′ ⊂ U such that k−1U ′k ⊂ U for all k ∈ K. Then
choose V so that HV a ⊂ HaU ′ for all a ∈ A. It follows that

HV g = HV ak ⊂ HaU ′k = Hakk−1U ′k = Hgk−1Uk ⊂ HgU

as desired.
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5 Counting

Our approach to counting is along the same lines as §2 of [DRS], with an
emphasis on axiomatics.

Given a sequence of sets of finite measure Bn in the affine symmetric
space V = G/H such that the measure m(Bn) → ∞ , we will show under
suitable hypotheses that

|Γv ∩ Bn| ∼ Cm(Bn)

for an explicit constant C > 0. Here v is the coset [H ].
Aside from working in the affine symmetric setting, there are two crucial

hypotheses leading to this asymptotic estimate:
(1) Γ meets H in a lattice; and
(2) the sets Bn are well-rounded.
We will see that even without (2) the asymptotic estimate holds in a

weaker sense.

Fibrations and integration. As a preliminary, suppose A ⊂ B ⊂ G is a
chain of closed subgroups of a Lie group G. Then there is a fibration

A\B@ >>> A\G@ > π >> B\G.

More precisely, A\G fibers over B\G with A\Bg as the fiber over Bg.
Now assume A, B and G are unimodular. (Any group which contains a

lattice is unimodular, so this condition will be satisfied in our applications
below.) Then A\B admits a B-invariant measure, and similarly for A\G
and B\G. We may normalize so the measure on A\G is the product of the
measures on B\G and A\B. (Compare [Wl, Ch. II, §9].)

If β is in L1(A\G), then the pushforward

(π∗β)(g) =

∫

A\Bg

β(b)db

is finite almost everywhere, π∗β ∈ L1(B\G) and
∫

B\G

π∗β =

∫

A\G

β.

In addition, if m(A\B) < ∞, then the pullback π∗α is in L1(A\G) for any
α ∈ L1(B\G).
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Weak convergence. While we are interested in studying the number of
points in Γv ∩ Bn, it proves fruitful to consider more generally the count

Fn(g) = |Γv ∩ gBn|
giving the part of the orbit in Bn shifted by g. It is clear that Fn descends
to a function

Fn : Γ\G → R ∪ {∞},
which we denote by the same letter.

The function Fn(g) can be built from

χn(g) =

{
1 if v ∈ gBn

0 otherwise.

Since H stabilizes v, the function χn descends to

χn : H\G → R

which is simply the indicator function of B−1
n . In particular

∫

H\G

χn = m(Bn) < ∞.

(Γ ∩ H)\Γy

(Γ ∩ H)\H −−−→ (Γ ∩ H)\G φ−−−→ H\G
π

y

Γ\G
Figure 5. Pullbacks and pushforwards.

To describe the relationship between χn and Fn, it is useful to refer to
Figure 5, where each vertical and horizontal triple is a fibration. Then Fn

can be expressed as

Fn(g) =
∑

γ∈(Γ∩H)\Γ

{
1 if v ∈ γgBn

0 otherwise
=

∑

(Γ∩H)\Γ

χn(γg) = π∗φ
∗(χn).

27



Note that the fibers of φ have finite volume, so integrability of χn implies
the same for φ∗χn and Fn.

Our first result requires only measure-theoretic assumptions on Bn.

Theorem 5.1 If m(Bn) → ∞, then the function Fn(g)/m(Bn) tends weakly
to a constant function C on X = Γ\G. More precisely, as n → ∞,

1

m(Bn)

∫

X

Fn(g)α(g)dg → C

∫

X

α(g)dg

for any compactly supported continuous function α, where

C =
m((Γ ∩ H)\H)

m(Γ\G)
.

Question. Can weak convergence be replaced by pointwise convergence
almost everywhere?

Proof. The idea of the proof is to transfer the integral of Fn against α to
an integral against χn on H\G, again making reference to Figure 5. Thus
∫

X

Fnα =

∫

Γ\G

(π∗φ
∗χn)(g)α(g)dg =

∫

H\G

χn(g)(φ∗π
∗α)(g)dg =

∫

H\G

χn(g)β(g),

where φ∗ is defined by integration over the fibers of φ. Thus

β(g) =

∫

(Γ∩H)\Hg

α(h)dh

(which clearly lives on H\G).
By Theorem 1.2(Equidistribution),

β(g) → m((Γ ∩ H)\H)

m(Γ\G)

∫

X

α

as g tends to infinity in H\G. On the other hand,

1

m(Bn)

∫

X

Fnα =

∫
H\G

χnβ
∫

H\G
χn

is just the average of β over the set B−1
n ⊂ H\G, whose measure is tending

to infinity. Thus

1

m(Bn)

∫

X

Fnα → m((Γ ∩ H)\H)

m(Γ\G)

∫

X

α = C

∫

X

α.
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Remark. The argument above requires only that β(g) tends to a constant
(i.e. (Γ∩H)\Hg becomes equidistributed) as g tends to infinity in a measure
theoretic sense. That is, we used only that β(g) can be made as close as one
likes to a constant by neglecting a set of g of finite measure.

We now impose the additional topological assumption that Bn is a well-
rounded sequence (see §1 for the definition).

Theorem 5.2 If m(Bn) → ∞ and Bn is a well-rounded sequence, then
Fn(g)/m(Bn) → C pointwise as n → ∞.

Corollary 5.3 For a well-rounded sequence,

Fn(id) = |Γv ∩ Bn| ∼
m((Γ ∩ H)\H)

m(Γ\G)
m(Bn).

This corollary is Theorem 1.4(Counting).

Proof of the theorem. To simplify notation, we prove that Fn(id)/m(Bn) →
C, this being the main case of interest.

By Proposition 1.3, for any ǫ > 0 we can find a symmetric neighborhood
U of the identity such that m(B′

n) > (1 − ǫ)m(Bn), where

B′
n =

⋂

g∈U

gBn.

Let F ′
n(g) = |Γv∩gB′

n|. Then F ′
n(g) ≤ Fn(id) for all g in U . But m(B′

n) → ∞,
so by Theorem 5.1 F ′

n(g)/m(B′
n) tends weakly to the constant function C

on Γ\G. Pairing F ′
n with a bump function α supported in Γ\U such that∫

α = 1, we find:

1

m(B′
n)

∫

Γ\G

F ′
n(g)α(g)dg ≤ 1

(1 − ǫ)m(Bn)

∫

Γ\G

Fn(id)α(g)dg =
Fn(id)

(1 − ǫ)m(Bn)
.

Consequently

C = lim
1

m(B′
n)

∫

Γ\G

F ′
nα ≤ lim inf

Fn(id)

m(Bn)
.

Replacing B′
n by ⋃

g∈U

Bng

yields the upper bound, showing that Fn(id)/m(Bn) → C.
The argument for convergence of Fn(g)/m(Bn) is similar.
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6 Representations of G and integral points on

homogeneous varieties.

For completeness, we connect the results above with some of the central
theorems obtained in [DRS] by very different means. These ideas can be
used to count integral points on affine homogeneous varieties, and coupled
with the circle method of Hardy, Littlewood and Ramanujan, they lead to a
proof of Siegel’s mass formula [ERS].

Let G be a connected semisimple Lie group with finite center and maximal
compact subgroup K. Let ρ : G → GL(S) be a representation of G acting
on the left on a finite-dimensional real vector space S. Let V be an affine
symmetric orbit of G in S; this means V = Gv for some v in S, and the
stabilizer H of v is the fixed point set of an involution on G.

For convenience, in this section we replace the sequence Bn by a contin-
uous family of sets Bt ⊂ G/H , defined as follows.

Let || · || be a K-invariant Euclidean norm on S; this means ||∑αisi||2 =∑
α2

i for a suitable basis si. Let

B = {s : ||s|| < 1} ⊂ S

be the unit ball in this norm. For t > 0 define

Bt = {[gH ] : ||gv|| < t} ⊂ G/H.

Then Bt corresponds to the dilation of B by t, under the identification of V
with G/H .

Theorem 6.1 Given ǫ > 0, there is a neighborhood U of the identity in G
and a T > 0 such that

m(U · ∂Bt)

m(Bt)
< ǫ

for all t > T . In other words, Bt is a continuous family of well-rounded
subsets of G/H.

The proof relies on an elementary fact about linear maps and an estimate
for the measure m(Bt) as a function of t.

Proposition 6.2 For any ǫ > 0, there is a neighborhood U of the identity
in G such that

B(1−ǫ)t ⊂ gBt ⊂ B(1+ǫ)t

for all g ∈ U and for all t > 0.
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Proof. It is easy to see that

(1 − ǫ)B ⊂ gB ⊂ (1 + ǫ)B

for any linear map g : S → S sufficiently close to the identity. Since lin-
ear maps commute with dilations, the proposition follows. (Compare [DRS,
Lemma 2.2].)

Proposition 6.3 There are constants a(ǫ), b(ǫ) tending to 1 as ǫ → 0 such
that

b(ǫ) ≤ lim inf
t→∞

m(B(1−ǫ)t)

m(Bt)
≤ lim sup

t→∞

m(B(1+ǫ)t)

m(Bt)
≤ a(ǫ).

For a proof, see [DRS, Appendix 1].

Proof of Theorem 6.1. Given ǫ > 0, choose δ > 0 and T > 0 by Proposi-
tion 6.3 so that

m(B(1+δ)t)

m(B(1−δ)t)
< 1 + ǫ

for all t > T . By Proposition 6.2, we can find a neighborhood U of the
identity in G such that U ·∂Bt ⊂ B(1+δ)t and (U ·∂Bt)∩B(1−δ)t = ∅. Theorem
6.1 follows immediately.

Now let Γ ⊂ G be a lattice satisfying the conditions of §1; that is, Γ∩H
is a lattice in H , and Γ has dense projection to G/G′ for any noncompact
normal subgroup G′ of positive dimension.

Applying Theorem 1.4 (Counting), we deduce:

Theorem 6.4 As t → ∞,

|Γv ∩ tB| = |[ΓH ] ∩ Bt| ∼
m((Γ ∩ H)\H)

m(Γ\G)
m(Bt).

Remarks. Since |Γv ∩ tB| is simply the number of points in the orbit of v
with norm less than t, we have obtained a new proof of the central counting
result (Theorem 1.2) of [DRS].

To count integral points on affine symmetric varieties defined over Z, one
may appeal to a result of Borel and Harish-Chandra which states that V (Z)
falls into finitely many orbits under the action of Γ = G(Z). This reduces
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the problem to the case of a single orbit, which is handled by the theorem
above. For details, see [DRS].

It seems likely that the sets Bt are well-rounded for much more general
choices of B, and therefore the counting result above holds for these sets
as well. For example, Proposition 6.2 holds when B is any open bounded
convex neighborhood of the origin in S, and the methods of [DRS, Appendix
1] can probably be adapted so that Proposition 6.3 covers this case too.

7 Beyond affine symmetric spaces

To conclude, we present a few examples, counterexamples and open questions
connected with spaces G/H which are not affine symmetric.

Horocycles. The simplest such example occurs when H = N , a maximal
unipotent subgroup of G = PSL2(R). The space G/N is not affine sym-
metric; geometrically this is reflected in the fact that a horocycle is not the
fixed-point set of any isometric involution of the hyperbolic plane.

Nevertheless the following conditional equidistribution result holds.

Theorem 7.1 Let C be a closed horocycle on a hyperbolic surface Σ of finite
volume, and let Ct denote the parallel horocycle of length exp(t) length(C).
Then Ct becomes equidistributed on Σ as t tends to +∞.

Sketch of the proof. One may use the same line of argument as the proof
of Theorems 2.1 and 2.4. Thicken the horocycle to an open set U of vectors
nearly normal to C and pointing away from the cusp. Then gt(U) lies close
to Ct for t > 0, and gt(U) becomes equidistributed by mixing.

Remark. On the other hand, gt(U) and Ct diverge for negative t, and Ct is
asymptotic to a cusp of Σ as t → −∞.

To state a counting theorem, we fix a horocycle C on Σ with a lift c to
H, and let N(R) denote the number of horocycles in the orbit Γc which meet
B(p, R).

Theorem 7.2 As R → ∞,

N(R) ∼ 1

π

length(C)

area(Σ)
area(B(p, R)).
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Sketch of the proof. Consider the lift C ′ of C to the covering space Σ′

induced by π1(C). The surface Σ′ has two ends: a finite volume cusp, and an
annular end with exponential volume growth. To estimate N(R), one may
mimic the proof of Theorem 2.3, using that fact that an R-neighborhood of
C ′ on Σ′has

area(B(C ′, R)) ∼ length(C) exp(R).

Unfortunately, this discussion does not seem to extend in a straightfor-
ward way to maximal unipotent subgroups in higher rank groups. Compare,
however, [FMT] for the case of H a maximal parabolic subgroup.

Counterexamples. In §6 we discussed the number of points in a Γ-orbit
on an affine symmetric variety V presented as a G-orbit for a linear repre-
sentation ρ. One might hope that this asymptotic count also holds without
the assumption that V = G/H is an affine symmetric space. This is not the
case; below we sketch a (non-affine symmetric) example where the conclusion
of Theorem 6.4 fails to hold. For more details see [EMS].

Let G = SL(2, C), let H be the subgroup of real diagonal matrices in G,
and let Γ = gSL(2, Z[i])g−1 where g is a real matrix chosen to conjugate a
hyperbolic element of SL2(Z) into H . Then Γ meets H is a lattice, but the
space G/H is not affine symmetric.

Here is a representation of G with an orbit isomorphic to G/H . Fix
a large positive number N , and let (z1, z2) be coordinates on C2. Let S
be the vector space of polynomial functions f(z1, z2, z̄1, z̄2) on C2 which are
homogeneous of degree N in z1 and z2, and also homogeneous of degree N
in z̄1 and z̄2. The monomials zm

1 zN−m
2 z̄1

nz̄2
N−n, where 0 ≤ m, n ≤ N , are a

basis for S.
Since G acts linearly on C2, it also acts on S by substitution. This

determines a representation ρ : G → GL(S) of the form ρ(g)f(z) = f(g−1z)
for z in C2.

Let v be the polynomial

v(z1, z2) =

[
z1z̄2 + z̄1z2

2

]2 [−z1z̄2 + z̄1z2

2i

]N−2

.

Then stabilizer of v is exactly H , so the variety V = Gv is naturally identified
with G/H .
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Next we consider the distribution of the subset Γv ⊂ V . Let K =
SU(2, C) be a maximal compact subgroup of G, let ‖ · ‖ be a K-invariant
norm on S, and let B be the open unit ball in this norm. Following §§5 and 6,
define Bt ⊂ G/H by Bt = {[gH ] : gv ∈ tB}, and let Ft(g) = |Γv∩ g(tB)|.

Theorem 7.3 There exists a nonconstant smooth positive function Λ(g) on
Γ\G, such that

Ft(g) ∼ Λ(g)
m((Γ ∩ H)\H)

m(Γ\G)
m(Bt)

as t → ∞.

Remarks. The asymptotic count above would have the same form as that
of Theorems 1.4 and 6.4 only if Λ(g) were identically equal to one. (Compare
Theorem 5.2, which asserts that Fn(g)/m(Bn) tends to a constant indepen-
dent of g in the affine symmetric setting.) Here the number of lattice points
still grows like the volume, but the constant of proportionality is subtle (it
depends on g).

This dependence results from a failure of the equidistribution Theorem
1.2. To explain this, let L = SL(2, R) ⊂ G denote the subgroup of real
matrices. In the example above we have

H ⊂ L ⊂ G

where Γ ∩ L, being a conjugate of SL2(Z), is a lattice in L. Thus if g tends
to infinity in L, the translates Y g of the H-orbit

Y = (Γ ∩ H)\H

lie in
Z = (Γ ∩ L)\L,

so they cannot become equidistributed in Γ\G. Roughly speaking, the count
in Theorem 7.3 differs from that of Theorem 6.4 because most of the measure
of the Bt is a finite distance from L.

The sets Bt above are nevertheless well-rounded, as can be seen by the
methods of §6.

This example still supports the conjecture that Fn(g) always converges
pointwise as n → ∞, in the notation of §5. And since

1

m(Γ\G)

∫

Γ\G

Λ(g) dg = 1
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the count of Theorem 6.4 is still correct on average.

Open questions.
1. It seems likely that Theorem 1.4 (Counting) can be strengthened to

include an error term of the form:

|Γv ∩ Bn| ∼ Cm(Bn) + O(m(Bn)
α)

for some α < 1. Indeed, such an error term might be obtained by an analysis
of the proof offered herein.

2. As remarked above, Theorem 1.2 (Equidistribution) fails to generalize
when there are subgroups L between H and G which also meet Γ in a lattice.
However one can hope to establish a more general equidistribution result for
(Γ∩H)\Hg by either controlling the groups which occur between H and G,
or by requiring that g tend to infinity in a stronger sense.

Progress on this question appears in [EMS].
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