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Distribution of Values for ζ

Theorem (Selberg, 1946)

Let V be a fixed positive real number. Then as T →∞, we have

1
T

#

t ∈ [T, 2T] :
log |ζ(1

2 + it)|√
1
2 log log T

≥ v

 ∼ 1√
2π

∫ ∞
v

e−
x2
2 dx,

for v ∈ [−V,V].

Radziwiłł & Soundararajan (2017)
give a new proof of this fact.



Distribution of Values for Dirichlet L-functions

Theorem (Selberg, 1946)

Let χ be a primitive Dirichlet character and V a fixed positive real
number. Then as T →∞, we have

1
T

#

t ∈ [T, 2T] :
log |L(1

2 + it, χ)|√
1
2 log log T

≥ v

 ∼ 1√
2π

∫ ∞
v

e−
x2
2 dx,

for v ∈ [−V,V].

Hsu & Wong (2020) provide a new proof of this fact.
Bombieri & Hejhal (1995) conditionally prove for a very general class
of L-functions that their logarithms also satisfy a central limit theorem.
Luo (1995) verified the conditional assumptions in the above for Hecke
L-functions associated with cusp forms.



Katz Sarnak Philosophy

• Central values L(1
2 + it, f ) of an L-function belong in a family with a

symmetry type governed by a classical compact matrix group.
• All the listed results so far have all been show to have approximately
normal distributions with mean 0 and variance 1

2 log log T .
• They are all examples of families that correspond to Unitary matrices,
U(N).
• So suppose now, instead of fixing an L-function and varying the
points it is evaluated at, we look at L(1/2, f ) and vary the f in some
family. Katz and Sarnak demonstrated that we can find families which
have their symmetry type governed by USp(N) and O(N) instead.



Keating Snaith Conjectures

Let S(D) represent a family of L-functions indexed by d that is
expected to have symmetry type governed by the symplectic matrix
group.
Define:

B(d) =
1√

log log D

(
log |L(1

2 , fd)| − 1
2

log log D
)
,

Random Matrix Theory predicts

1
|S(D)|

∑
d∈S(D)

∆B(d) → N(0, 1) as D→∞,

∆x is the point mass function at x and N(0, 1) means normal
distribution of mean 0 and standard deviation 1.



Partial Results

Theorem (Hough, 2014)

As D→∞,

P
(

d ∈ s(D) :
1√

log log D

(
log
∣∣∣∣L(1

2
, χ8d

)∣∣∣∣− 1
2

log log D
)
> A

)
≤ 1√

2π

∫ ∞
A

e−
x2

2 dx + oA(1),

s(D) is the set of square-free odd d such that D
2 ≤ d ≤ D.



Partial Results

Theorem (Hough,2014)

Suppose the ‘‘Low-lying zero hypothesis’’ holds for {L(s, χ8d)}d∈s(D)

and define

B(d) =
1√

log log D

(
log |L(1

2 , χ8d)| − 1
2

log log D
)
,

1
|s(D)|

∑
d∈S(D)

∆B(d) → N(0, 1) as D→∞,

∆x is the point mass function at x and N(0, 1) means normal
distribution of mean 0 and standard deviation 1.



Conditions

Hypothesis (Low-lying zero hypothesis)

Assume y = y(D)→∞ with D. Then for d such that 8d is a
fundamental discriminant, we have

P
(

D
2
≤ d ≤ D : γmin(d) <

2π
y log D

)
= o(1) as D→∞,

where
γmin(d) = min

L(ρ,χ8d)=0
ρ= 1

2+β+iγ

|γ|.



Transition to Function Fields

We are interested in this problem over Fq(t), q = pe an odd prime
power.
LetHn = {D ∈ Fq[t] : D is monic and square-free and deg(D) = n}.
Define

L(s, χD) =
∑

f monic

χD(f )

|f |s
, χD(·) =

(
D
·

)
, Re(s) > 1

Using the change of variable u = q−s, we have

L(u, χD) =
∑
f∈M

χD(f ) ud(f ), |u| < 1
q
.

Orthogonality gives us that L(u, χD) is actually a polynomial of degree
at most deg(D)− 1.



Transition to function fields

Thus, we may write it as

L(u, χD) = (1− u)λ
n−1−λ∏

j=1

(1− u
√

qαj),

where
√

qαj =
√

qe(−θj,D) are the reciprocals of the roots q−
1
2 e(θj,D)

and λ = 1 if deg(D) is even and 0 otherwise.



Statement of Results
Theorem
Let Z be a real number. As n→∞, we have

P
(

D ∈ Hn :
1√

log n

(
log
∣∣∣∣L(1

2
, χD

)∣∣∣∣− 1
2

log n
)
> Z

)
≤ 1√

2π

∫ ∞
Z

e−
t2
2 dt + oZ(1).

Theorem
Let Z be a real number. As n→∞, we have

P
(

D ∈ Hn :
1√

log n

(
log
∣∣∣∣L(1

2
, χD

)∣∣∣∣− 1
2

log n
)
> Z

)
≥ 19− cot(1/4)

16
1√
2π

∫ ∞
Z

e−
t2
2 dt + oZ(1).



Statement of results

Theorem
Suppose that the ‘‘Low-lying Zero Hypothesis’’ holds for
{L(s, χD)}D∈Hn . For D ∈ Hn, we consider

Ã(D) =
1√

log n

(
log
∣∣∣∣L(1

2
, χD

)∣∣∣∣− 1
2

log n
)
.

Then we have

1
|Hn|

∑
D∈Hn

∆Ã(D) → N(0, 1), n→∞.

∆x is the point mass function at x and N(0, 1) means normal
distribution of mean 0 and standard deviation 1.



Conditions

Hypothesis (Low-lying Zero Hypothesis)

Let θj,D be the angles of zeros of L∗(u, χD). If y = y(g)→∞ then as
g→∞ we obtain

1
|Hn|

∣∣∣∣{D ∈ Hn : min
j
|θj,D| <

1
yg

}∣∣∣∣ = o(1),

where g satisfies 2g = deg(D)− 1− λ with λ = 1 if deg(D) is even
and 0 otherwise.



Ideas in the proof

Theorem
Let g be defined by 2g = deg(D)− 1− λ and σo = σo(g) be a
function of g, tending to zero as g→∞ in such a way that σog→∞
but σog√

log g → 0. For D ∈ Hn, we consider

A(D) =
1√

log n

(
log
∣∣∣∣L(1

2
+ σo, χD

)∣∣∣∣− 1
2

log n
)
.

Then, as n→∞

1
|Hn|

∑
D∈Hn

∆A(D) → N(0, 1),

where ∆x is the point mass at x and N(0, 1) is the standard normal
distribution.



Ideas in Proof

Proposition

Let X ≥ 1, σ0 = c
X , with 0 < c < 1

2 log q . Then

log L(1/2 + σ0, χD) =
∑

f∈M≤X

Λ(f )χD(f )

d(f )|f |σ

+ O

 1
X3

∑
f∈M≤3X

ΛX(f )χD(f )

|f |
1
2+σ0

+ O
(

g
X

+
λ

X(X + 2)

)
.



Ideas in Proof

We define

Hn,0 =

{
D ∈ Hn : L(q−

1
2 e(θj,D), χD) = 0⇒ min

j
|θj,D| >

1
yg

}
.

Proposition

Let X ≤ n
4k but goes to infinity with n. Suppose that gσo = o(

√
log g)

as g→∞. Then, we have

1
|Hn|

∑
D∈Hn,0

∣∣∣ log
∣∣∣L(1

2
, χD

) ∣∣∣−log
∣∣∣L(1

2
+ σo, χD

) ∣∣∣∣∣∣ = o
(√

log g
)
.



Ideas for the unconditional lower bound

Proposition

Let X ≥ 1. If we know that L(1
2 , χD) 6= 0 then

logL
(

1
2
, χD

)
=

∑
f∈M≤X

Λ(f )χD(f )

d(f )|f |
1
2

+ O

 1
X2

∑
X<d(f )≤3X

ΛX(f )χD(f )

d(f )|f |
1
2

+ O
(

g
X3 +

λ

X(X + 2)

)
.



Ideas for the unconditional lower bound

Theorem (Bui and Florea, 2016)

We have

1
|H2g+1|

|{D ∈ H2g+1 : L(
1
2
, χD) 6= 0}| ≥

19− cot(1
4)

16
+ o(1) = 0.9427...+ o(1),

as g→∞.



Future/Ongoing work

X X A new collaborator has been added Fatma Çiçek.
Consider the following new scenario:
Let a1, a2 be fixed real numbers and t1, t2 be fixed numbers s.t.
|tj| ≤ c/X.
Define

PL

(
1
2

+ it, χD

)
:= a1RePX

(
1
2

+ it1, χD

)
+ alRePX

(
1
2

+ itl, χD

)
Q: Can we obtain a central limit theorem for PL

(1
2 + it, χD

)
??



Initial Investigations and Surprises

We begin by considering PL
( 1

2 + σ0 + it, χD
)

where
σ0 := σ0(g)→ 0 as g→∞ in such a way that σog→∞ but
σog√
log g → 0.

Lemma
Assume that 1 ≤ X ≤ n

2k . Uniformly for all even natural numbers

k� (log n)
1
3 , we have

1
|Hn|

∑
D∈Hn

PL

(
1
2

+ σo + it, χD

)k

=

k!

(k/2)!2
k
2

(
(a1 + a2)2 log X

) k
2

(
1 + O

(
k3

log X

))
.


