L^p-norm bounds for automorphic forms

Rizwan Khan

University of Mississippi

(joint work with Peter Humphries)

Dynamical systems

Rizwan Khan

æ

Dynamical systems

Billiards on a rectangular table

< 47 ▶

- 3 >

Dynamical systems

Billiards on a rectangular table

• Predictable: the trajectories of two billiard balls with almost identical initial conditions are similar.

Stadium

イロト イヨト イヨト イヨト

æ

Stadium

• Trajectories generally very sensitive to initial conditions

Stadium

- Trajectories generally very sensitive to initial conditions
- Trajectories generally fill out stadium in an even manner.

Stadium

- Trajectories generally very sensitive to initial conditions
- Trajectories generally fill out stadium in an even manner.

Chaotic dynamical system

Negatively curved surface

Negatively curved surface

Billards on $X = SL_2(\mathbb{Z}) \setminus \mathbb{H}$

Geodesics are vertical lines and circular arcs \perp real axis.

- B

Negatively curved surface

Billards on $X = SL_2(\mathbb{Z}) \setminus \mathbb{H}$

Geodesics are vertical lines and circular arcs \perp real axis.

Chaotic dynamical system

イロト イヨト イヨト イヨト

æ

Quantum mechanics: a wave ψ takes the place of the billiard ball, governed by a Schrödinger type equation.

4 A N

12 N 4 12

Quantum mechanics: a wave ψ takes the place of the billiard ball, governed by a Schrödinger type equation.

Probability of finding wave in region A given by integrating $|\psi|^2$ over A.

Quantum mechanics: a wave ψ takes the place of the billiard ball, governed by a Schrödinger type equation.

Probability of finding wave in region A given by integrating $|\psi|^2$ over A.

Q. Do the waves exhibit characteristics of chaos, when the underlying classical billiards is chaotic?

Arithmetic Quantum chaos

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э

< ロ > < 同 > < 回 > < 回 >

Waves are (square-integrable) eigenfunctions of Laplacian

Waves are (square-integrable) eigenfunctions of Laplacian

Assume also that waves are real valued and eigenfunctions of the Hecke operators.

イロト イポト イラト イラ

Waves are (square-integrable) eigenfunctions of Laplacian

Assume also that waves are real valued and eigenfunctions of the Hecke operators.

Hecke Maass cusp forms

(closely related to classical holomorphic modular forms)

Quantum Unique Ergodicity

イロト イヨト イヨト イヨト

æ

Let f be a Hecke Maass cusp form with Laplacian eigenvalue λ_f , normalized so that $\int_X f(z)^2 d\mu_z = \int_X 1 d\mu_z$.

Let f be a Hecke Maass cusp form with Laplacian eigenvalue λ_f , normalized so that $\int_X f(z)^2 d\mu_z = \int_X 1 d\mu_z$.

Let f be a Hecke Maass cusp form with Laplacian eigenvalue λ_f , normalized so that $\int_X f(z)^2 d\mu_z = \int_X 1 d\mu_z$.

Then for any nice compact set $A \subset X$,

$$\frac{\int\limits_{A} f(z)^2 d\mu_z}{\int\limits_{A} 1 d\mu_z} \to 1 \qquad as \quad \lambda_f \to \infty.$$

A D b A B b A B b

Let f be a Hecke Maass cusp form with Laplacian eigenvalue λ_f , normalized so that $\int_X f(z)^2 d\mu_z = \int_X 1 d\mu_z$.

Then for any nice compact set $A \subset X$,

$$\frac{\int\limits_{A} f(z)^2 d\mu_z}{\int\limits_{A} 1 d\mu_z} \to 1 \qquad as \quad \lambda_f \to \infty.$$

QUE says that the probability of finding a wave in A depends only on A.

Let f be a Hecke Maass cusp form with Laplacian eigenvalue λ_f , normalized so that $\int_X f(z)^2 d\mu_z = \int_X 1 d\mu_z$.

Then for any nice compact set $A \subset X$,

$$\frac{\int\limits_{A} f(z)^2 d\mu_z}{\int\limits_{A} 1 d\mu_z} \to 1 \qquad as \quad \lambda_f \to \infty.$$

QUE says that the probability of finding a wave in A depends only on A.

In other words, waves of high energy become evenly spread out.

< ロ > < 同 > < 回 > < 回 >

QUE is part of a bigger conjecture.

QUE is part of a bigger conjecture.

Conjecture (Berry 1977)

Let f be a Hecke Maass cusp form with Laplacian eigenvalue λ_f , normalized so that $\int_X f(z)^2 d\mu_z = \int_X 1 d\mu_z$.

QUE is part of a bigger conjecture.

Conjecture (Berry 1977)

Let f be a Hecke Maass cusp form with Laplacian eigenvalue λ_f , normalized so that $\int_X f(z)^2 d\mu_z = \int_X 1 d\mu_z$.

QUE is part of a bigger conjecture.

Conjecture (Berry 1977)

Let f be a Hecke Maass cusp form with Laplacian eigenvalue λ_f , normalized so that $\int_X f(z)^2 d\mu_z = \int_X 1 d\mu_z$.

Then for any nice compact set $A \subset X$,

$$rac{\int\limits_{A} f(z)^k d\mu_z}{\int\limits_{A} 1 d\mu_z} o c_k \qquad as \quad \lambda_f o \infty,$$

QUE is part of a bigger conjecture.

Conjecture (Berry 1977)

Let f be a Hecke Maass cusp form with Laplacian eigenvalue λ_f , normalized so that $\int_X f(z)^2 d\mu_z = \int_X 1 d\mu_z$.

Then for any nice compact set $A \subset X$,

$$\frac{\int f(z)^k d\mu_z}{\int \int 1 d\mu_z} \to c_k \qquad as \quad \lambda_f \to \infty,$$

where $c_k = k^{th}$ moment of a standard Normal random variable.

QUE is part of a bigger conjecture.

Conjecture (Berry 1977)

Let f be a Hecke Maass cusp form with Laplacian eigenvalue λ_f , normalized so that $\int_X f(z)^2 d\mu_z = \int_X 1 d\mu_z$.

Then for any nice compact set $A \subset X$,

$$\frac{\int f(z)^k d\mu_z}{\int \int 1 d\mu_z} \to c_k \qquad as \quad \lambda_f \to \infty,$$

where $c_k = k^{th}$ moment of a standard Normal random variable.

Hecke Maass cusp forms are expected to behave like random waves for large Laplacian eigenvalue!

< ロ > < 同 > < 回 > < 回 >

QUE is part of a bigger conjecture.

Conjecture (Berry 1977)

Let f be a Hecke Maass cusp form with Laplacian eigenvalue λ_f , normalized so that $\int_X f(z)^2 d\mu_z = \int_X 1 d\mu_z$.

Then for any nice compact set $A \subset X$,

$$rac{\int A}{\int A} \frac{f(z)^k d\mu_z}{\int A d\mu_z} o c_k \qquad as \quad \lambda_f o \infty,$$

where $c_k = k^{th}$ moment of a standard Normal random variable.

Hecke Maass cusp forms are expected to behave like random waves for large Laplacian eigenvalue!

Can take A = X for small values of k.

• • • • • • • • • • • •

イロト イヨト イヨト イヨト

æ
What's known

 $k = 2 \dots \sqrt{\sqrt{1}}$ This is QUE.

æ

 $k = 3 \dots \sqrt{\sqrt{A}} = X$ by Watson (2002), compact A by Huang (2022).

< ロ > < 同 > < 回 > < 回 >

 $k = 3 \dots \sqrt{\sqrt{A}} = X$ by Watson (2002), compact A by Huang (2022).

 $k = 4 \dots \checkmark$ Partial results, for A = X.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

 $k = 3 \dots \sqrt{\sqrt{A}} = X$ by Watson (2002), compact A by Huang (2022).

 $k = 4 \dots \checkmark$ Partial results, for A = X.

Proven for Eisenstein series (Djanković-K 2020)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-

 $k = 3 \dots \sqrt{\sqrt{A}} = X$ by Watson (2002), compact A by Huang (2022).

 $k = 4 \dots \checkmark$ Partial results, for A = X.

Proven for Eisenstein series (Djanković-K 2020)

Proven for Dihedral Maass cusp forms (Humphries-K 2020)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $k = 3 \dots \sqrt{\sqrt{A}} = X$ by Watson (2002), compact A by Huang (2022).

 $k = 4 \dots \checkmark$ Partial results, for A = X.

Proven for Eisenstein series (Djanković-K 2020)

Proven for Dihedral Maass cusp forms (Humphries-K 2020)

Conditionally proven (on GLH) for general Hecke Maass cusp forms (Buttcane-K 2017).

L^p-norm Upper bounds

イロト イヨト イヨト イヨト

æ

Conjecture (Iwaniec-Sarnak 1995)

$$\|f\|_{p} = \left(\int\limits_{X} |f(z)|^{p} d\mu_{z}\right)^{\frac{1}{p}} \ll \lambda_{f}^{\epsilon}.$$

Conjecture (Iwaniec-Sarnak 1995)

$$\|f\|_{p} = \left(\int\limits_{X} |f(z)|^{p} d\mu_{z}\right)^{\frac{1}{p}} \ll \lambda_{f}^{\epsilon}.$$

Conjecture (Iwaniec-Sarnak 1995)

$$\|f\|_{p} = \left(\int\limits_{X} |f(z)|^{p} d\mu_{z}\right)^{\frac{1}{p}} \ll \lambda_{f}^{\epsilon}.$$

Warning: Such small bounds are not expected in general.

Conjecture (Iwaniec-Sarnak 1995)

$$\|f\|_{p} = \left(\int\limits_{X} |f(z)|^{p} d\mu_{z}\right)^{\frac{1}{p}} \ll \lambda_{f}^{\epsilon}.$$

Warning: Such small bounds are not expected in general.

Sogge (1988) has proven L^{p} -norm bounds for Laplacian eigenfunctions ψ of compact *n*-dimensional Riemannian manifolds.

Conjecture (Iwaniec-Sarnak 1995)

$$\|f\|_{\rho} = \Big(\int\limits_{X} |f(z)|^{\rho} d\mu_{z}\Big)^{\frac{1}{\rho}} \ll \lambda_{f}^{\epsilon}.$$

Warning: Such small bounds are not expected in general.

Sogge (1988) has proven L^{p} -norm bounds for Laplacian eigenfunctions ψ of compact *n*-dimensional Riemannian manifolds.

His bounds are not $\|\psi\|_{\rho} \ll \lambda_{\psi}^{\epsilon}$, yet they are sharp for the *n*-sphere S^{n} .

< ロ > < 同 > < 回 > < 回 >

A (10) A (10) A (10)

Sarnak and Watson conjectured: $||f||_4 \ll \lambda_f^{\epsilon}$.

Sarnak and Watson conjectured: $||f||_4 \ll \lambda_f^{\epsilon}$.

Until now, the best known was Sogge's bound $||f||_4 \ll \lambda_f^{\frac{1}{16}+\epsilon}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sarnak and Watson conjectured: $||f||_4 \ll \lambda_f^{\epsilon}$.

Until now, the best known was Sogge's bound $||f||_4 \ll \lambda_f^{\frac{1}{16}+\epsilon}$.

Theorem (Humphries-K)

$$\|f\|_4 \ll \lambda_f^{\frac{3}{304}+\epsilon}$$

Sarnak and Watson conjectured: $||f||_4 \ll \lambda_f^{\epsilon}$.

Until now, the best known was Sogge's bound $||f||_4 \ll \lambda_f^{\frac{1}{16}+\epsilon}$.

Theorem (Humphries-K)

$$\|f\|_4 \ll \lambda_f^{\frac{3}{304}+\epsilon}$$

Sarnak and Watson conjectured: $||f||_4 \ll \lambda_f^{\epsilon}$.

Until now, the best known was Sogge's bound $||f||_4 \ll \lambda_f^{\frac{1}{16}+\epsilon}$.

Theorem (Humphries-K)

$$\|f\|_4 \ll \lambda_f^{\frac{3}{304}+\epsilon}$$

If we assume the Lindelöf Hypothesis for $L(\frac{1}{2}, u_j)$ and $\zeta(\frac{1}{2} + it)$, then $||f||_4 \ll \lambda_f^{\epsilon}$.

Sarnak and Watson conjectured: $||f||_4 \ll \lambda_f^{\epsilon}$.

Until now, the best known was Sogge's bound $\|f\|_4 \ll \lambda_f^{\frac{1}{16}+\epsilon}$.

Theorem (Humphries-K)

$$\|f\|_4 \ll \lambda_f^{\frac{3}{304}+\epsilon}$$

If we assume the Lindelöf Hypothesis for $L(\frac{1}{2}, u_j)$ and $\zeta(\frac{1}{2} + it)$, then $||f||_4 \ll \lambda_f^{\epsilon}$.

Interpolating with Iwaniec and Sarnak's bound $||f||_{\infty} \ll \lambda_{f}^{\frac{5}{24}+\epsilon}$, gives new L^{p} -norm bounds for all $p \ge 4$.

イロト イヨト イヨト イヨト

Э.

Let f be a Hecke Maass cusp form with Laplace eigenvalue λ_f

< ロ > < 同 > < 回 > < 回 >

э

Let *f* be a Hecke Maass cusp form with Laplace eigenvalue $\lambda_f = \frac{1}{4} + t_f^2$.

< ロ > < 同 > < 回 > < 回 >

э

Let *f* be a Hecke Maass cusp form with Laplace eigenvalue $\lambda_f = \frac{1}{4} + t_f^2$.

Let $\{u_j : j \ge 1\}$ be an orthonormal basis of Hecke Maass cusp forms with Laplace eigenvalue $\lambda_j = \frac{1}{4} + t_j^2$.

不同 トイモトイモ

Let *f* be a Hecke Maass cusp form with Laplace eigenvalue $\lambda_f = \frac{1}{4} + t_f^2$.

Let $\{u_j : j \ge 1\}$ be an orthonormal basis of Hecke Maass cusp forms with Laplace eigenvalue $\lambda_j = \frac{1}{4} + t_j^2$.

 $\int_X f(z)^4 d\mu_z$

Let *f* be a Hecke Maass cusp form with Laplace eigenvalue $\lambda_f = \frac{1}{4} + t_f^2$.

Let $\{u_j : j \ge 1\}$ be an orthonormal basis of Hecke Maass cusp forms with Laplace eigenvalue $\lambda_j = \frac{1}{4} + t_j^2$.

 $\int_{X} f(z)^{4} d\mu_{z}$ $= \langle f^{2}, f^{2} \rangle$

Let *f* be a Hecke Maass cusp form with Laplace eigenvalue $\lambda_f = \frac{1}{4} + t_f^2$.

Let $\{u_j : j \ge 1\}$ be an orthonormal basis of Hecke Maass cusp forms with Laplace eigenvalue $\lambda_j = \frac{1}{4} + t_j^2$.

$$\int_{X} f(z)^{4} d\mu_{z}$$

= $\langle f^{2}, f^{2} \rangle$ = $\sum_{j \ge 1} |\langle f^{2}, u_{j} \rangle|^{2} + \dots$ by Parseval

不同 トイモトイモ

Let *f* be a Hecke Maass cusp form with Laplace eigenvalue $\lambda_f = \frac{1}{4} + t_f^2$.

Let $\{u_j : j \ge 1\}$ be an orthonormal basis of Hecke Maass cusp forms with Laplace eigenvalue $\lambda_j = \frac{1}{4} + t_j^2$.

$$\int_{X} f(z)^{4} d\mu_{z}$$

$$= \langle f^{2}, f^{2} \rangle = \sum_{j \ge 1} |\langle f^{2}, u_{j} \rangle|^{2} + \dots \text{ by Parseval}$$

$$= \sum_{t_{j} < 2t_{f}} \frac{L(\frac{1}{2}, u_{j})L(\frac{1}{2}, u_{j} \times \text{sym}^{2}f)}{t_{j}t_{f}} + \dots \text{ by Watson's formula}$$

不同 トイモトイモ

Let *f* be a Hecke Maass cusp form with Laplace eigenvalue $\lambda_f = \frac{1}{4} + t_f^2$.

Let $\{u_j : j \ge 1\}$ be an orthonormal basis of Hecke Maass cusp forms with Laplace eigenvalue $\lambda_j = \frac{1}{4} + t_j^2$.

$$\int_{X} f(z)^{4} d\mu_{z}$$

$$= \langle f^{2}, f^{2} \rangle = \sum_{j \ge 1} |\langle f^{2}, u_{j} \rangle|^{2} + \dots \text{ by Parseval}$$

$$= \sum_{t_{j} < 2t_{f}} \frac{L(\frac{1}{2}, u_{j})L(\frac{1}{2}, u_{j} \times \text{sym}^{2}f)}{t_{j}t_{f}} + \dots \text{ by Watson's formula}$$

 \bullet Mean value of product of \textit{GL}_2 and $\textit{GL}_2 \times \textit{GL}_3$ L-functions.

イロト イポト イラト イラ

Let *f* be a Hecke Maass cusp form with Laplace eigenvalue $\lambda_f = \frac{1}{4} + t_f^2$.

Let $\{u_j : j \ge 1\}$ be an orthonormal basis of Hecke Maass cusp forms with Laplace eigenvalue $\lambda_j = \frac{1}{4} + t_j^2$.

$$\int_{X} f(z)^{4} d\mu_{z}$$

$$= \langle f^{2}, f^{2} \rangle = \sum_{j \ge 1} |\langle f^{2}, u_{j} \rangle|^{2} + \dots \text{ by Parseval}$$

$$= \sum_{t_{j} < 2t_{f}} \frac{L(\frac{1}{2}, u_{j})L(\frac{1}{2}, u_{j} \times \text{sym}^{2}f)}{t_{j}t_{f}} + \dots \text{ by Watson's formula}$$

• Mean value of product of GL_2 and $GL_2 \times GL_3$ *L*-functions.

• Central values are real and \geq 0.

イロト イポト イラト イラ

Let *f* be a Hecke Maass cusp form with Laplace eigenvalue $\lambda_f = \frac{1}{4} + t_f^2$.

Let $\{u_j : j \ge 1\}$ be an orthonormal basis of Hecke Maass cusp forms with Laplace eigenvalue $\lambda_j = \frac{1}{4} + t_j^2$.

$$\int_{X} f(z)^{4} d\mu_{z}$$

$$= \langle f^{2}, f^{2} \rangle = \sum_{j \ge 1} |\langle f^{2}, u_{j} \rangle|^{2} + \dots \text{ by Parseval}$$

$$= \sum_{t_{j} < 2t_{f}} \frac{L(\frac{1}{2}, u_{j})L(\frac{1}{2}, u_{j} \times \text{sym}^{2}f)}{t_{j}t_{f}} + \dots \text{ by Watson's formula}$$

- Mean value of product of GL_2 and $GL_2 \times GL_3$ L-functions.
- Central values are real and \geq 0.
- Reminiscent of the fourth moment problem $\sum_{t_i < T} L(\frac{1}{2}, u_j)^4$.

Let *f* be a Hecke Maass cusp form with Laplace eigenvalue $\lambda_f = \frac{1}{4} + t_f^2$.

Let $\{u_j : j \ge 1\}$ be an orthonormal basis of Hecke Maass cusp forms with Laplace eigenvalue $\lambda_j = \frac{1}{4} + t_j^2$.

$$\int_{X} f(z)^{4} d\mu_{z}$$

$$= \langle f^{2}, f^{2} \rangle = \sum_{j \ge 1} |\langle f^{2}, u_{j} \rangle|^{2} + \dots \text{ by Parseval}$$

$$= \sum_{t_{j} < 2t_{f}} \frac{L(\frac{1}{2}, u_{j})L(\frac{1}{2}, u_{j} \times \text{sym}^{2}f)}{t_{j}t_{f}} + \dots \text{ by Watson's formula}$$

- Mean value of product of GL_2 and $GL_2 \times GL_3$ L-functions.
- Central values are real and \geq 0.
- Reminiscent of the fourth moment problem $\sum_{t_i < T} L(\frac{1}{2}, u_j)^4$.
- Dihedral & Eisenstein: the $GL_2 \times GL_3$ L-function factors further.

Rizwan Khan

イロト イヨト イヨト イヨト

$$\|f\|_{4}^{4} \approx \sum_{t_{j} < 2t_{f}} \frac{L(\frac{1}{2}, u_{j})L(\frac{1}{2}, u_{j} \times \operatorname{sym}^{2} f)}{t_{j}t_{f}}$$

イロト イヨト イヨト イヨト

$$\|f\|_4^4 \approx \sum_{t_j < 2t_f} \frac{L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f)}{t_j t_f} \stackrel{?}{\ll} t_f^{\epsilon}.$$

イロト イヨト イヨト イヨト

$$\|f\|_4^4 \approx \sum_{t_j < 2t_f} \frac{L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f)}{t_j t_f} \stackrel{?}{\ll} t_f^{\epsilon}.$$

Working in dyadic intervals $T \le t_j \le 2T$,

$$\sum_{t_j\sim T}\frac{L(\frac{1}{2},u_j)L(\frac{1}{2},u_j\times \mathrm{sym}^2 f)}{Tt_f} \stackrel{?}{\ll} t_f^{\epsilon}.$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

$$\|f\|_4^4 \approx \sum_{t_j < 2t_f} \frac{L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f)}{t_j t_f} \stackrel{?}{\ll} t_f^{\epsilon}.$$

Working in dyadic intervals $T \le t_j \le 2T$,

$$\sum_{t_j\sim T}\frac{L(\frac{1}{2},u_j)L(\frac{1}{2},u_j\times \mathrm{sym}^2 f)}{Tt_f}\overset{?}{\ll} t_f^{\epsilon}.$$

The sum is over T^2 forms and the convexity bound is $L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f) \ll Tt_f$

不同 トイモトイモ
Getting a feel

$$\|f\|_4^4 \approx \sum_{t_i < 2t_f} \frac{L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f)}{t_j t_f} \stackrel{?}{\ll} t_f^{\epsilon}.$$

Working in dyadic intervals $T \le t_j \le 2T$,

$$\sum_{t_j\sim T}\frac{L(\frac{1}{2},u_j)L(\frac{1}{2},u_j\times \mathrm{sym}^2 f)}{Tt_f}\overset{?}{\ll} t_f^{\epsilon}.$$

The sum is over T^2 forms and the convexity bound is $L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f) \ll Tt_f$

• For $T \approx 1$, convexity is enough.

Getting a feel

$$\|f\|_4^4 \approx \sum_{t_i < 2t_f} \frac{L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f)}{t_j t_f} \stackrel{?}{\ll} t_f^{\epsilon}.$$

Working in dyadic intervals $T \leq t_j \leq 2T$,

$$\sum_{t_j\sim T}\frac{L(\frac{1}{2},u_j)L(\frac{1}{2},u_j\times \mathrm{sym}^2 f)}{Tt_f}\overset{?}{\ll} t_f^{\epsilon}.$$

The sum is over T^2 forms and the convexity bound is $L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f) \ll Tt_f$

- For $T \approx 1$, convexity is enough.
- For $T \ll t_f$, need to prove certain subconvexity bound on average.

不同 いんきいんき

Getting a feel

$$\|f\|_4^4 \approx \sum_{t_i < 2t_f} \frac{L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f)}{t_j t_f} \stackrel{?}{\ll} t_f^{\epsilon}.$$

Working in dyadic intervals $T \leq t_j \leq 2T$,

$$\sum_{t_j \sim T} \frac{L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f)}{Tt_f} \stackrel{?}{\ll} t_f^{\epsilon}.$$

The sum is over T^2 forms and the convexity bound is $L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f) \ll Tt_f$

- For $T \simeq 1$, convexity is enough.
- For $T \ll t_f$, need to prove certain subconvexity bound on average.
- For $T \simeq t_f$, need to prove Lindelöf on average.

These are certain identities between two different moments of central values of L-functions.

4 A N

These are certain identities between two different moments of central values of L-functions.

Goes back to work of Kuznetsov and Motohashi.

These are certain identities between two different moments of central values of L-functions.

Goes back to work of Kuznetsov and Motohashi.

We need to prove new reciprocity formulae and use them in a hybrid form (*f* is not fixed).

4 A N

4 3 5 4 3 5

$GL_2 \times GL_3 \rightsquigarrow GL_3, GL_1$ product

イロト イヨト イヨト イヨト

æ

$$\sum_{t_j} L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \int_{-\infty}^{\infty} L(\frac{1}{2} + it, \operatorname{sym}^2 f) \zeta(\frac{1}{2} + it) \widetilde{h}(t) dt$$

イロト イヨト イヨト イヨト

$$\sum_{t_j} L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \int_{-\infty}^{\infty} L(\frac{1}{2} + it, \operatorname{sym}^2 f) \zeta(\frac{1}{2} + it) \widetilde{h}(t) dt$$

イロト イヨト イヨト イヨト

$$\sum_{t_j} L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \int_{-\infty}^{\infty} L(\frac{1}{2} + it, \operatorname{sym}^2 f) \zeta(\frac{1}{2} + it) \widetilde{h}(t) dt$$

• If $t_j \sim T$ on LHS, then $t \sim t_f^2/T^2$ on RHS.

イロト イポト イヨト イヨト

$$\sum_{t_j} L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \int_{-\infty}^{\infty} L(\frac{1}{2} + it, \operatorname{sym}^2 f) \zeta(\frac{1}{2} + it) \widetilde{h}(t) dt$$

- If $t_j \sim T$ on LHS, then $t \sim t_f^2/T^2$ on RHS.
- Similar formula also recently proven by Kwan.

$$\sum_{t_j} L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \int_{-\infty}^{\infty} L(\frac{1}{2} + it, \operatorname{sym}^2 f) \zeta(\frac{1}{2} + it) \widetilde{h}(t) dt$$

- If $t_j \sim T$ on LHS, then $t \sim t_f^2/T^2$ on RHS.
- Similar formula also recently proven by Kwan.
- Compare with Motohashi's formula

$$\sum L(\frac{1}{2}, u_j)^3 \rightsquigarrow \int |\zeta(\frac{1}{2} + it)|^4 dt.$$

$$\sum_{t_j} L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \int_{-\infty}^{\infty} L(\frac{1}{2} + it, \operatorname{sym}^2 f) \zeta(\frac{1}{2} + it) \widetilde{h}(t) dt$$

- If $t_j \sim T$ on LHS, then $t \sim t_f^2/T^2$ on RHS.
- Similar formula also recently proven by Kwan.
- Compare with Motohashi's formula

$$\sum L(\frac{1}{2}, u_j)^3 \rightsquigarrow \int |\zeta(\frac{1}{2} + it)|^4 dt.$$

• RHS can be bounded by inserting absolute values to kill the transform function,

• • • • • • • • • • • • •

$$\sum_{t_j} L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \int_{-\infty}^{\infty} L(\frac{1}{2} + it, \operatorname{sym}^2 f) \zeta(\frac{1}{2} + it) \widetilde{h}(t) dt$$

- If $t_j \sim T$ on LHS, then $t \sim t_f^2/T^2$ on RHS.
- Similar formula also recently proven by Kwan.
- Compare with Motohashi's formula

$$\sum L(\frac{1}{2}, u_j)^3 \rightsquigarrow \int |\zeta(\frac{1}{2} + it)|^4 dt.$$

• RHS can be bounded by inserting absolute values to kill the transform function, then apply Cauchy-Schwarz, & the Large Sieve.

(a) < (a) < (b) < (b)

Theorem (Humphries-K)

$$\sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) \widetilde{h}(t_j).$$

イロト イポト イヨト イヨト

Theorem (Humphries-K)

$$\sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) \widetilde{h}(t_j).$$

イロト イポト イヨト イヨト

Theorem (Humphries-K)

$$\sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) \widetilde{h}(t_j).$$

• If $t_j \sim T$ on LHS, then $t_j \sim t_f/T$ on RHS.

イロト イポト イヨト イヨト

Theorem (Humphries-K)

$$\sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) \widetilde{h}(t_j).$$

- If $t_j \sim T$ on LHS, then $t_j \sim t_f/T$ on RHS.
- Compare with Kuznetsov: $\sum L(\frac{1}{2}, u_j)^4 \rightsquigarrow \sum L(\frac{1}{2}, u_j)^4$.

< ロ > < 同 > < 回 > < 回 >

$$\sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) \widetilde{h}(t_j).$$

- If $t_j \sim T$ on LHS, then $t_j \sim t_f/T$ on RHS.
- Compare with Kuznetsov: $\sum L(\frac{1}{2}, u_j)^4 \rightsquigarrow \sum L(\frac{1}{2}, u_j)^4$.
- See also work of Blomer-Li-Miller ($GL_2 \times GL_4$), Humphries-K. ($GL_2 \times GL_2$, $GL_2 \times GL_2$ product).

< ロ > < 同 > < 回 > < 回 >

$$\sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) \widetilde{h}(t_j).$$

- If $t_j \sim T$ on LHS, then $t_j \sim t_f/T$ on RHS.
- Compare with Kuznetsov: $\sum L(\frac{1}{2}, u_j)^4 \rightsquigarrow \sum L(\frac{1}{2}, u_j)^4$.
- See also work of Blomer-Li-Miller ($GL_2 \times GL_4$), Humphries-K. ($GL_2 \times GL_2$, $GL_2 \times GL_2$ product).
- On RHS, we insert absolute values to kill the transform function,

$$\sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) \widetilde{h}(t_j).$$

- If $t_j \sim T$ on LHS, then $t_j \sim t_f/T$ on RHS.
- Compare with Kuznetsov: $\sum L(\frac{1}{2}, u_j)^4 \rightsquigarrow \sum L(\frac{1}{2}, u_j)^4$.
- See also work of Blomer-Li-Miller ($GL_2 \times GL_4$), Humphries-K. ($GL_2 \times GL_2$, $GL_2 \times GL_2$ product).
- On RHS, we insert absolute values to kill the transform function, then leave it as it is since central values are \geq 0. Important!

$$\sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) h(t_j) = Diag + \sum_{t_j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) \widetilde{h}(t_j).$$

- If $t_j \sim T$ on LHS, then $t_j \sim t_f/T$ on RHS.
- Compare with Kuznetsov: $\sum L(\frac{1}{2}, u_j)^4 \rightsquigarrow \sum L(\frac{1}{2}, u_j)^4$.
- See also work of Blomer-Li-Miller ($GL_2 \times GL_4$), Humphries-K. ($GL_2 \times GL_2$, $GL_2 \times GL_2$ product).
- \bullet On RHS, we insert absolute values to kill the transform function, then leave it as it is since central values are \geq 0. Important!
- LHS and RHS sums have same length when $T = t_f^{\frac{1}{2}}$.

< ロ > < 同 > < 回 > < 回 >

Need to understand $\sum_{t_j < 2t_f} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \text{sym}^2 f).$

< ロ > < 同 > < 回 > < 回 >

Need to understand $\sum_{t_j < 2t_f} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \text{sym}^2 f)$.

< 🗇 🕨 < 🖃 🕨

Need to understand
$$\sum_{t_j < 2t_f} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \text{sym}^2 f).$$

Use reciprocity to pass to a short dual moment, then trivially bound using the Large Sieve.

Need to understand
$$\sum_{t_j < 2t_f} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \text{sym}^2 f).$$

Use reciprocity to pass to a short dual moment, then trivially bound using the Large Sieve.

Average is too short to get a hold of. Use reciprocity to pass to a long dual moment.

Need to understand
$$\sum_{t_j < 2t_f} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \text{sym}^2 f).$$

Use reciprocity to pass to a short dual moment, then trivially bound using the Large Sieve.

Average is too short to get a hold of. Use reciprocity to pass to a long dual moment. Apply Hölder to get

$$\left(\sum L(\frac{1}{2}, u_j)^{12}\right)^{\frac{1}{12}} \left(\sum L(\frac{1}{2}, u_j \times \text{sym}^2 f)\right)^{\frac{10}{12}} \left(\sum L(\frac{1}{2}, u_j \times \text{sym}^2 f)^2\right)^{\frac{1}{12}},$$

and apply Jutila's bound, reciprocity, and the large sieve.

Rizwan Khan

$$L(\frac{1}{2}, u_j) = 0$$
 if root number $\lambda_j(-1) = -1$.

$$L(\frac{1}{2}, u_j) = 0$$
 if root number $\lambda_j(-1) = -1$.

```
\sum_{j} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f)
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$L(\frac{1}{2}, u_j) = 0 \text{ if root number } \lambda_j(-1) = -1.$$

$$\sum_j L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

$$= \sum_j \lambda_j(-1)L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

イロト イポト イヨト イヨト

æ

$$L(\frac{1}{2}, u_j) = 0 \text{ if root number } \lambda_j(-1) = -1.$$

$$\sum_j L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

$$= \sum_j \lambda_j(-1) L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

$$= \sum_j \lambda_j(-1) \sum_{n,m} \frac{\lambda_j(n) \lambda_j(m) \lambda_f(m^2)}{\sqrt{nm}}$$

イロト イポト イヨト イヨト

$$L(\frac{1}{2}, u_j) = 0 \text{ if root number } \lambda_j(-1) = -1.$$

$$\sum_j L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

$$= \sum_j \lambda_j(-1)L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

$$= \sum_j \lambda_j(-1)\sum_{n,m} \frac{\lambda_j(n)\lambda_j(m)\lambda_f(m^2)}{\sqrt{nm}}$$

$$= \sum_{n,m} \frac{1}{\sqrt{nm}} \sum_c \frac{S(-n,m,c)}{c} \lambda_f(m^2)$$

< ロ > < 同 > < 回 > < 回 >

$$L(\frac{1}{2}, u_j) = 0 \text{ if root number } \lambda_j(-1) = -1.$$

$$\sum_j L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

$$= \sum_j \lambda_j(-1)L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

$$= \sum_j \lambda_j(-1)\sum_{n,m} \frac{\lambda_j(n)\lambda_j(m)\lambda_f(m^2)}{\sqrt{nm}}$$

$$= \sum_{n,m} \frac{1}{\sqrt{nm}} \sum_c \frac{S(-n,m,c)}{c} \lambda_f(m^2)$$

$$= \sum_{n,m} \frac{1}{\sqrt{nm}} \sum_c \frac{S(n,m,c)}{c} \lambda_f(m^2)$$
Rough idea for second reciprocity formula

$$L(\frac{1}{2}, u_j) = 0 \text{ if root number } \lambda_j(-1) = -1.$$

$$\sum_j L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

$$= \sum_j \lambda_j(-1)L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

$$= \sum_j \lambda_j(-1)\sum_{n,m} \frac{\lambda_j(n)\lambda_j(m)\lambda_f(m^2)}{\sqrt{nm}}$$

$$= \sum_{n,m} \frac{1}{\sqrt{nm}} \sum_c \frac{S(-n,m,c)}{c} \lambda_f(m^2)$$

$$= \sum_{n,m} \frac{1}{\sqrt{nm}} \sum_c \frac{S(n,m,c)}{c} \lambda_f(m^2)$$

$$= \sum_j L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

э

Rough idea for second reciprocity formula

$$L(\frac{1}{2}, u_j) = 0 \text{ if root number } \lambda_j(-1) = -1.$$

$$\sum_j L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

$$= \sum_j \lambda_j(-1)L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

$$= \sum_j \lambda_j(-1)\sum_{n,m} \frac{\lambda_j(n)\lambda_j(m)\lambda_f(m^2)}{\sqrt{nm}}$$

$$= \sum_{n,m} \frac{1}{\sqrt{nm}} \sum_c \frac{S(-n,m,c)}{c} \lambda_f(m^2)$$

$$= \sum_{n,m} \frac{1}{\sqrt{nm}} \sum_c \frac{S(n,m,c)}{c} \lambda_f(m^2)$$

$$= \sum_j L(\frac{1}{2}, u_j)L(\frac{1}{2}, u_j \times \text{sym}^2 f)$$

Work with Dirichlet series and careful analytic continuation

A .

Rough idea for second reciprocity formula

$$\begin{aligned} \mathcal{L}(\frac{1}{2}, u_j) &= 0 \text{ if root number } \lambda_j(-1) = -1. \\ \sum_j \mathcal{L}(\frac{1}{2}, u_j) \mathcal{L}(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) \\ &= \sum_j \lambda_j(-1) \mathcal{L}(\frac{1}{2}, u_j) \mathcal{L}(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) \\ &= \sum_j \lambda_j(-1) \sum_{n,m} \frac{\lambda_j(n)\lambda_j(m)\lambda_j(m)}{\sqrt{nm}} \\ &= \sum_{n,m} \frac{1}{\sqrt{nm}} \sum_c \frac{S(-n,m,c)}{c} \lambda_f(m^2) \\ &= \sum_{n,m} \frac{1}{\sqrt{nm}} \sum_c \frac{S(n,m,c)}{c} \lambda_f(m^2) \\ &= \sum_j \mathcal{L}(\frac{1}{2}, u_j) \mathcal{L}(\frac{1}{2}, u_j \times \operatorname{sym}^2 f) \end{aligned}$$

- Work with Dirichlet series and careful analytic continuation
- ► The various steps get encoded in the final transform function, which takes work to understand.

A (10) A (10) A (10)

 \widetilde{h} looks like the inverse Mellin transform of

 \widetilde{h} looks like the inverse Mellin transform of

The Mellin transform of the Bessel transform of *h* arising from Kuznetsov's formula

 \times

.

 \widetilde{h} looks like the inverse Mellin transform of

The Mellin transform of the Bessel transform of *h* arising from Kuznetsov's formula

 \times

Gamma functions which arise from Voronoi and Poisson summation

Х

 \widetilde{h} looks like the inverse Mellin transform of

The Mellin transform of the Bessel transform of *h* arising from Kuznetsov's formula

 \times

Gamma functions which arise from Voronoi and Poisson summation

Х

The Mellin transform of the Bessel kernels from Kuznetsov's formula for Kloosterman sums (these are also gamma functions).

Transition region

Rizwan Khan

æ

æ

 $L(\frac{1}{2}, u_j \times \text{sym}^2 f)$ experiences 'conductor-dropping' for t_j close to $2t_f$.

< ロ > < 同 > < 回 > < 回 >

 $L(\frac{1}{2}, u_j \times \text{sym}^2 f)$ experiences 'conductor-dropping' for t_j close to $2t_f$.

So we need to understand short interval sums

$$\sum_{|t_j-2t_f|\sim t_f^{\alpha}} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f),$$

for which the transform function is tricky to understand.

 $L(\frac{1}{2}, u_j \times \text{sym}^2 f)$ experiences 'conductor-dropping' for t_j close to $2t_f$.

So we need to understand short interval sums

$$\sum_{|t_j-2t_f|\sim t_f^{\alpha}} L(\frac{1}{2}, u_j) L(\frac{1}{2}, u_j \times \operatorname{sym}^2 f),$$

for which the transform function is tricky to understand.

Reminiscent of work of Jutila: $\sum_{|t_i-T|\sim T^{\alpha}} L(\frac{1}{2}, u_j)^4 \text{ (sharp bounds only for } \alpha > \frac{1}{3}.)$

4 D K 4 B K 4 B K 4 B K

Thank you!

<ロ> (日) (日) (日) (日) (日)

2