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Dynamical systems

Billiards on a rectangular table

• Predictable: the trajectories of two billiard balls with almost identical
initial conditions are similar.
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A different billiards table

Stadium

• Trajectories generally very sensitive to initial conditions
• Trajectories generally fill out stadium in an even manner.

Chaotic dynamical system
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Negatively curved surface

Billards on X = SL2(Z)\H

Geodesics are vertical lines and
circular arcs ⊥ real axis.

Chaotic dynamical system
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Quantum chaos

These were examples in classical dynamics.

Quantum mechanics: a wave ψ takes the place of the billiard ball,
governed by a Schrödinger type equation.

Probability of finding wave in region A given by integrating |ψ|2 over A.

Q. Do the waves exhibit characteristics of chaos, when the underlying
classical billiards is chaotic?
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Arithmetic Quantum chaos

X = SL2(Z)\H (classical dynamics is chaotic)

Waves are (square-integrable) eigenfunctions of Laplacian

Assume also that waves are real valued and eigenfunctions of the
Hecke operators.

Hecke Maass cusp forms

(closely related to classical
holomorphic modular forms)

Rizwan Khan Lp -norm bounds for automorphic forms joint work with Peter Humphries 6 / 21



olemiss.jpg

Arithmetic Quantum chaos

X = SL2(Z)\H (classical dynamics is chaotic)

Waves are (square-integrable) eigenfunctions of Laplacian

Assume also that waves are real valued and eigenfunctions of the
Hecke operators.

Hecke Maass cusp forms

(closely related to classical
holomorphic modular forms)

Rizwan Khan Lp -norm bounds for automorphic forms joint work with Peter Humphries 6 / 21



olemiss.jpg

Arithmetic Quantum chaos

X = SL2(Z)\H (classical dynamics is chaotic)

Waves are (square-integrable) eigenfunctions of Laplacian

Assume also that waves are real valued and eigenfunctions of the
Hecke operators.

Hecke Maass cusp forms

(closely related to classical
holomorphic modular forms)

Rizwan Khan Lp -norm bounds for automorphic forms joint work with Peter Humphries 6 / 21



olemiss.jpg

Arithmetic Quantum chaos

X = SL2(Z)\H (classical dynamics is chaotic)

Waves are (square-integrable) eigenfunctions of Laplacian

Assume also that waves are real valued and eigenfunctions of the
Hecke operators.

Hecke Maass cusp forms

(closely related to classical
holomorphic modular forms)

Rizwan Khan Lp -norm bounds for automorphic forms joint work with Peter Humphries 6 / 21



olemiss.jpg

Arithmetic Quantum chaos

X = SL2(Z)\H (classical dynamics is chaotic)

Waves are (square-integrable) eigenfunctions of Laplacian

Assume also that waves are real valued and eigenfunctions of the
Hecke operators.

Hecke Maass cusp forms

(closely related to classical
holomorphic modular forms)

Rizwan Khan Lp -norm bounds for automorphic forms joint work with Peter Humphries 6 / 21



olemiss.jpg

Quantum Unique Ergodicity

Theorem (Lindenstrauss 2006, Soundararajan 2010)
Let f be a Hecke Maass cusp form with Laplacian eigenvalue λf ,
normalized so that

∫
X

f (z)2dµz =
∫
X

1dµz .

Then for any nice compact set A ⊂ X,

∫
A

f (z)2dµz∫
A

1dµz
→ 1 as λf →∞.

QUE says that the probability of finding a wave in A depends only on A.

In other words, waves of high energy become evenly spread out.
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Random Wave Conjecture

QUE is part of a bigger conjecture.

Conjecture (Berry 1977)
Let f be a Hecke Maass cusp form with Laplacian eigenvalue λf ,
normalized so that

∫
X

f (z)2dµz =
∫
X

1dµz .

Then for any nice compact set A ⊂ X,∫
A

f (z)kdµz∫
A

1dµz
→ ck as λf →∞,

where ck = k th moment of a standard Normal random variable.

Hecke Maass cusp forms are expected to behave like random waves
for large Laplacian eigenvalue!
Can take A = X for small values of k .
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What’s known

k = 2 . . .XX This is QUE.

k = 3 . . .XX A = X by Watson (2002), compact A by Huang (2022).

k = 4 . . .X Partial results, for A = X .

Proven for Eisenstein series (Djanković-K 2020)

Proven for Dihedral Maass cusp forms (Humphries-K 2020)

Conditionally proven (on GLH) for general Hecke Maass cusp forms
(Buttcane-K 2017).
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Lp-norm Upper bounds

For p relatively small, one would expect

Conjecture (Iwaniec-Sarnak 1995)

‖f‖p =
(∫

X

|f (z)|pdµz

) 1
p � λεf .

Warning: Such small bounds are not expected in general.

Sogge (1988) has proven Lp-norm bounds for Laplacian
eigenfunctions ψ of compact n-dimensional Riemannian manifolds.

His bounds are not ‖ψ‖p � λεψ, yet they are sharp for the n-sphere Sn.
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L4-norm bounds

The L4-norm is special due to its connection to L-functions.

Sarnak and Watson conjectured: ‖f‖4 � λεf .

Until now, the best known was Sogge’s bound ‖f‖4 � λ
1
16+ε

f .

Theorem (Humphries-K)

‖f‖4 � λ
3

304+ε

f .

If we assume the Lindelöf Hypothesis for L(1
2 ,uj) and ζ(1

2 + it), then
‖f‖4 � λεf .

Interpolating with Iwaniec and Sarnak’s bound ‖f‖∞ � λ
5

24+ε

f , gives
new Lp-norm bounds for all p ≥ 4.
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f .

Theorem (Humphries-K)

‖f‖4 � λ
3

304+ε

f .

If we assume the Lindelöf Hypothesis for L(1
2 ,uj) and ζ(1

2 + it), then
‖f‖4 � λεf .

Interpolating with Iwaniec and Sarnak’s bound ‖f‖∞ � λ
5

24+ε

f , gives
new Lp-norm bounds for all p ≥ 4.
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L-functions

Let f be a Hecke Maass cusp form with Laplace eigenvalue λf =
1
4 + t2

f .

Let {uj : j ≥ 1} be an orthonormal basis of Hecke Maass cusp forms
with Laplace eigenvalue λj =

1
4 + t2

j .∫
X

f (z)4dµz

= 〈f 2, f 2〉=
∑
j≥1
|〈f 2,uj〉|2 + . . . by Parseval

=
∑

tj<2tf

L(1
2 ,uj)L(1

2 ,uj × sym2f )
tj tf

+ . . . by Watson’s formula

• Mean value of product of GL2 and GL2 ×GL3 L-functions.
• Central values are real and ≥ 0.
• Reminiscent of the fourth moment problem

∑
tj<T

L(1
2 ,uj)

4.

• Dihedral & Eisenstein: the GL2 ×GL3 L-function factors further.
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Getting a feel

‖f‖44 ≈
∑

tj<2tf

L(1
2 ,uj)L(1

2 ,uj × sym2f )
tj tf

?
� tεf .

Working in dyadic intervals T ≤ tj ≤ 2T ,

∑
tj∼T

L(1
2 ,uj)L(1

2 ,uj × sym2f )
Ttf

?
� tεf .

The sum is over T 2 forms and the convexity bound is
L(1

2 ,uj)L(1
2 ,uj × sym2f )� Ttf

• For T � 1, convexity is enough.

• For T � tf , need to prove certain subconvexity bound on average.

• For T � tf , need to prove Lindelöf on average.
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Reciprocity formulae for L-functions

These are certain identities between two different moments of central
values of L-functions.

Goes back to work of Kuznetsov and Motohashi.

We need to prove new reciprocity formulae and use them in a hybrid
form (f is not fixed).
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GL2 ×GL3  GL3,GL1 product

Theorem (Humphries-K)

∑
tj

L(1
2 ,uj × sym2f )h(tj) = Diag +

∫ ∞
−∞

L(1
2 + it , sym2f )ζ(1

2 + it)h̃(t)dt

• If tj ∼ T on LHS, then t ∼ t2
f /T

2 on RHS.
• Similar formula also recently proven by Kwan.
• Compare with Motohashi’s formula∑

L(1
2 ,uj)

3  
∫
|ζ(1

2 + it)|4dt .
• RHS can be bounded by inserting absolute values to kill the
transform function, then apply Cauchy-Schwarz, & the Large Sieve.
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Application to the L4-norm problem

Need to understand
∑

tj<2tf
L(1

2 ,uj)L(1
2 ,uj × sym2f ).

Use reciprocity to pass to a short dual moment, then trivially bound
using the Large Sieve.

Average is too short to get a hold of. Use reciprocity to pass to a long
dual moment. Apply Hölder to get(∑

L(1
2 ,uj)

12
) 1

12 (∑L(1
2 ,uj × sym2f )

) 10
12
(∑

L(1
2 ,uj × sym2f )2

) 1
12
,

and apply Jutila’s bound, reciprocity, and the large sieve.
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Rough idea for second reciprocity formula

L(1
2 ,uj) = 0 if root number λj(−1) = −1.∑

j
L(1

2 ,uj)L(1
2 ,uj × sym2f )

=
∑

j
λj(−1)L(1

2 ,uj)L(1
2 ,uj × sym2f )

=
∑

j
λj(−1)

∑
n,m

λj (n)λj (m)λf (m2)√
nm

=
∑
n,m

1√
nm

∑
c

S(−n,m,c)
c λf (m2)

=
∑
n,m

1√
nm

∑
c

S(n,m,c)
c λf (m

2)

=
∑
j

L(1
2 ,uj)L(1

2 ,uj × sym2f )

IWork with Dirichlet series and careful analytic continuation
I The various steps get encoded in the final transform function, which
takes work to understand.
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Weight function

Let h(tj) be weight function on LHS, and h̃(tj) the transform function on
the RHS.

h̃ looks like the inverse Mellin transform of

The Mellin transform of the Bessel transform of h arising from
Kuznetsov’s formula

×

Gamma functions which arise from Voronoi and Poisson summation

×

The Mellin transform of the Bessel kernels from Kuznetsov’s formula
for Kloosterman sums (these are also gamma functions).
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End

Thank you!
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