Geodesic Restrictions of Maaß Forms and Moments of Hecke L**-Functions**

Peter Humphries (joint with Jesse Thorner)

July 28, 2022

Peter Humphries [Geodesic Restrictions of Maaß Forms](#page-30-0)

The Eigenvalue Problem for the Laplacian

Let (M, g) be a compact (or, more generally, finite volume) n-dimensional Riemannian manifold without boundary.

Example

- \bullet the *n*-sphere $S^n = \{ (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1^2 + \cdots + x_{n+1}^2 = n \}$
- the *n*-torus $\mathbb{T}^n = \{(x_1, \ldots, x_n) \in (\mathbb{R}/\mathbb{Z})^n\}$

We shall study Laplacian eigenfunctions: L²-normalised solutions $f \in L^2(M)$ to the eigenvalue problem

 $\Delta f = \lambda f$,

where the Laplace–Beltrami operator Δ is

$$
\Delta \coloneqq -\frac{1}{\sqrt{|\det g|}}\sum_{j,k=1}^n \frac{\partial}{\partial x_j} g^{jk}\sqrt{|\det g|}\frac{\partial}{\partial x_k}
$$

and $\lambda \in [0, \infty)$ is the Laplacian eigenvalue of f.

Examples: Torus

These eigenfunctions and eigenvalues need not have closed forms.

For particularly nice manifolds M , such as spheres or tori, we can explicitly describe the Laplacian eigenfunctions and eigenvalues.

Example

\nThe Laplace–Beltrami operator on
$$
\mathbb{T}^n
$$
 is

\n
$$
\Delta = -\sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}.
$$
\nA basis of $L^2(\mathbb{T}^n)$ consisting of Laplacian eigenfunctions

\n
$$
f(x_1, \ldots, x_n) \text{ is given by}
$$
\n
$$
\{\sin(2\pi(x_1y_1 + \cdots + x_ny_n)), \cos(2\pi(x_1y_1 + \cdots + x_ny_n)) : (y_1, \ldots, y_n) \in \mathbb{Z}^n\}
$$

with eigenvalues $4\pi^2(y_1^2 + \cdots + y_n^2)$.

Examples: Torus

Examples: Sphere

Examples: Bunimovich Stadium

Interesting setting for number theorists: Riemannian locally symmetric spaces $M = \Gamma \backslash G/K$;

- \bullet G is a Lie group,
- K is a maximal compact subgroup of G ,
- Γ is a lattice in G.

Simplest interesting case: $G = SL_2(\mathbb{R})$, $K = SO(2)$, $\Gamma = SL_2(\mathbb{Z})$;

 $G/K \cong \mathbb{H}$ is the upper half-plane

$$
\mathbb{H} = \{ z = x + iy \in \mathbb{C} : y > 0 \},
$$

 \bullet $\Gamma\backslash G/K \cong \mathrm{SL}_2(\mathbb{Z})\backslash \mathbb{H}$ is the modular surface $\mathrm{SL}_2(\mathbb{Z})\backslash \mathbb{H}=\Big\{z=x+iy\in\mathbb{H}:-\frac{1}{2}\Big\}$ $\frac{1}{2}$ < x < $\frac{1}{2}$ $\frac{1}{2}$, $x^2 + y^2 > 1$,

Laplacian eigenfunctions are automorphic forms.

 $\mathbb H$ is a negatively curved hyperbolic surface.

 $SL_2(\mathbb{Z})\backslash\mathbb{H}$ inherits a hyperbolic metric from \mathbb{H} .

The Laplacian is
$$
\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right).
$$

The volume measure on $\mathrm{SL}_2(\mathbb{Z})\backslash\mathbb{H}$ is $d\mathrm{vol}(z)=\frac{3}{\pi}$ dx dy $\frac{xy}{y^2}$.

Nonconstant eigenfunctions of Δ on $\mathbb H$ that are $\mathrm{SL}_2(\mathbb Z)$ -invariant (equivalently, nonconstant Laplacian eigenfunctions on $SL_2(\mathbb{Z})\backslash\mathbb{H}$) are Maaß forms:

type of automorphic form closely related to classical holomorphic modular forms.

For each $k \in 2\mathbb{N}$, one can instead define the weight k Laplacian

$$
\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \frac{\partial}{\partial x}.
$$

If $g\in L^2\left(\mathrm{SL}_2(\mathbb{Z})\backslash\mathbb{H}\right)$ satisfies the automorphic eigenvalue problem

$$
\Delta_k g = \frac{k}{2} \left(1 - \frac{k}{2} \right) g,
$$
\n
$$
g \left(\frac{az + b}{cz + d} \right) = \left(\frac{cz + d}{|cz + d|} \right)^k g(z) \quad \text{for all } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}),
$$

the function $G(z)\coloneqq y^{-k/2}g(x+iy)$ is a holomorphic modular form of weight k .

L²-Restriction Bounds for Laplacian Eigenfunctions

Question

In the large eigenvalue limit, how big is the restriction of a Laplacian eigenfunction to a chosen submanifold?

Natural way to study the size of restrictions to a submanifold N of eigenfunctions f on a manifold M is to estimate their restricted L^2 -norms in terms of λ :

$$
||f|_N||_2 := \left(\int_N |f(x)|^2 \, d\mathrm{vol}_g(x)\right)^{\frac{1}{2}}.
$$

Heuristic

If M and N are *arithmetic*, then $\|f|_N\|_2^2$ is equal to a weighted moment of L-functions.

Bilinear L 2 -Norm Bounds for Maaß Forms

Example

Take $M = SL_2(\mathbb{Z})\backslash \mathbb{H} \times SL_2(\mathbb{Z})\backslash \mathbb{H}$ and $N = SL_2(\mathbb{Z})\backslash \mathbb{H}$ (embedded diagonally).

- Laplacian eigenfunctions on M are of the form $F(z_1, z_2) = f_1(z_1) f_2(z_2)$, where f_1, f_2 are Maaß forms.
- The restricted L^2 -norm of F is

$$
||F|_N||_2^2 = \int_{\mathrm{SL}_2(\mathbb{Z}) \backslash \mathbb{H}} |f_1(z)f_2(z)|^2 \, \frac{3}{\pi} \frac{dx \, dy}{y^2}.
$$

In particular, if $f_1 = f_2$, this is the L^4 -norm of f_1 .

By Parseval's identity for $L^2(\mathrm{SL}_2(\mathbb{Z})\backslash\mathbb{H})$ and the Watson–Ichino triple product formula,

$$
||F|_N||_2^2 \approx \sum_f \frac{\Lambda\left(\frac{1}{2}, f \otimes f_1 \otimes f_2\right)}{\Lambda(1, \text{sym}^2 f)\Lambda(1, \text{sym}^2 f_1)\Lambda(1, \text{sym}^2 f_2)}
$$

.

Geodesic L 2 -Restriction Bounds

Question

Let *M* be a 2-dimensional compact (or, more generally, finite volume) Riemannian manifold, and let N be a finite length geodesic segment on M. In the large eigenvalue limit, how large is $||f||_N||_2$?

Theorem (Burq–G´erard–Tzvetkov (2007))

We have that

$$
||f|_{N}||_{2}\ll \lambda^{\frac{1}{8}}.
$$

Moreover, this is sharp if $M = S^2$.

This is the convexity bound.

Question

Can one do better for arithmetic surfaces M?

Geodesics on $\mathrm{SL}_2(\mathbb{Z})\backslash\mathbb{H}$

Geodesics on H are either vertical lines or semicircles centred on the real axis.

Geodesics on $SL_2(\mathbb{Z})\backslash \mathbb{H}$ are the projections of geodesics on \mathbb{H} .

Theorem (Marshall (2016))

Let M be an arithmetic 2-dimensional compact Riemannian manifold and N be a finite length geodesic segment on M. Then $||f|_{N}||_2 \ll_{\varepsilon} \lambda^{\frac{1}{8} - \frac{1}{56} + \varepsilon}.$

Proof uses the amplified pre-trace formula; no connection to moments of L-functions.

Question

Can one do better if not only the surface M is arithmetic but the geodesic segment N is also arithmetic?

Theorem (Ghosh–Reznikov–Sarnak (2013))

Let $M = SL_2(\mathbb{Z})\backslash \mathbb{H}$ and N be a finite length geodesic segment of the vertical geodesic from 0 to i ∞ . Then $||f|_N ||_2 \ll_{\varepsilon} \lambda^{\varepsilon}$.

Proof uses moments!

Vertical Geodesic L^2 -Restriction Bounds

Sketch of proof.

We show more generally that

$$
\int_0^\infty |f(iy)|^2 \frac{dy}{y} \ll_{\varepsilon} \lambda^{\varepsilon}.
$$

By Parseval's identity for $L^2((0,\infty))$ (i.e. for the Mellin transform), LHS is

$$
\frac{1}{2\pi}\int_{-\infty}^{\infty}\left|\int_{0}^{\infty}f(iy)y^{it}\frac{dy}{y}\right|^{2}dt.
$$

The inner squared integral is equal to

$$
\frac{\left|\Lambda\left(\frac{1}{2}+it,f\right)\right|^{2}}{\Lambda(1,\text{sym}^{2} f)} \approx \frac{\left|L\left(\frac{1}{2}+it,f\right)\right|^{2}}{L(1,\text{sym}^{2} f)} \frac{1}{(1+|t_{f}-t|)^{1/2}(1+|t_{f}+t|)^{1/2}} \times \begin{cases} 1 & \text{if } |t| \leq t_{f}, \\ e^{-\pi(|t|-t_{f})} & \text{if } |t| \geq t_{f}, \end{cases}
$$

where $\lambda = 1/4 + t_f^2$.

Vertical Geodesic L^2 -Restriction Bounds

Sketch of proof (cont'd).

Since $1/L(1,\mathsf{sym}^2\, f) \ll_{\varepsilon} \lambda^{\varepsilon}$, just need to show

$$
\int_{-t_f}^{t_f} \frac{\left|L\left(\frac{1}{2}+it,f\right)\right|^2}{(1+|t_f-t|)^{1/2}(1+|t_f+t|)^{1/2}}\,dt\ll_{\varepsilon}\lambda^{\varepsilon}.
$$

Trivially holds under the Lindelöf hypothesis; need to show this unconditionally.

Aside

\n
$$
\text{Were } f \text{ the Eisenstein series } E(z, 1/2 + it_f), \text{ then}
$$
\n $L(s, f) = \zeta(s + it_f)\zeta(s - it_f).$ \n Would need to show\n

\n\n $\int_{-t_f}^{t_f} \frac{\prod_{\pm_1, \pm_2} \zeta\left(\frac{1}{2} \pm_1 it_f \pm_2 it\right)}{(1 + |t_f - t|)^{1/2}(1 + |t_f + t|)^{1/2}} \, dt \ll_{\varepsilon} t_f^{\varepsilon}.$ \n

Shifted fourth moment of the Riemann zeta function!

Vertical Geodesic L^2 -Restriction Bounds

Sketch of proof (cont'd).

Need to show

$$
\int_{-t_f}^{t_f} \frac{\left|L\left(\frac{1}{2}+it,f\right)\right|^2}{(1+|t_f-t|)^{1/2}(1+|t_f+t|)^{1/2}}\,dt\ll_{\varepsilon}\lambda^{\varepsilon}.
$$

Approximate functional equations: insert the Dirichlet polynomial

$$
L\left(\frac{1}{2} + it, f\right) \approx \sum_{n \leq (1+|t_f-t|)^{1/2} (1+|t_f+t|)^{1/2}} \frac{\lambda_f(n)}{n^{\frac{1}{2}+it}}.
$$

Interchange integration and double summation, yielding

$$
\sum_{m,n} \frac{\lambda_f(m)\lambda_f(n)}{\sqrt{mn}} \int \frac{1}{(1+|t_f-t|)^{1/2}(1+|t_f+t|)^{1/2}} \left(\frac{m}{n}\right)^{it} dt.
$$

Estimate the integral via integration by parts: small unless m is close to n. Use Cauchy–Schwarz to separate sum over m and n. Finally, bound each sum via the fact (due to Iwaniec) that $\sum_{n\leq x}|\lambda_f(n)|^2\ll_{\varepsilon} t_f^{\varepsilon}x.$

 \Box

Closed Geodesic L^2 -Restriction Bounds

Question

Can one do better for *infinitely* many geodesics on $SL_2(\mathbb{Z})\backslash\mathbb{H}$?

Theorem $(H.-Thorner (2022+))$

Let N be a closed geodesic on $SL_2(\mathbb{Z})\backslash\mathbb{H}$. Then

$$
||f|_{N}||_{2}\ll_{\varepsilon}\lambda^{\vartheta+\varepsilon},
$$

where $\vartheta = \frac{7}{64}$ is the best known exponent towards the generalised Ramanujan conjecture for Maaß forms.

Assuming the generalised Ramanujan conjecture, so that $\vartheta = 0$, this is essentially sharp.

Closed Geodesics on $\mathrm{SL}_2(\mathbb{Z})\backslash\mathbb{H}$

Key properties of closed geodesics:

- Bijective correspondence with narrow ideal classes of real quadratic number fields $\mathbb{Q}(\sqrt{D})$ (*arithmetic* submanifold)
- Length is $2 \log \epsilon$, where ϵ is the fundamental unit of $\mathbb{Q}(\sqrt{\epsilon})$ D)
- Infinitely many closed geodesics
- Union of all closed geodesics is dense in $SL_2(\mathbb{Z})\backslash\mathbb{H}$
- Topologically equivalent to a circle

Fourier Analysis on Closed Geodesics

First step of proof: Parseval's identity for $L^2(N)$.

Since closed geodesics are topologically circles, we get

$$
\int_N |f(z)|^2 ds = \sum_{m=-\infty}^{\infty} \left| \int_N f(z) e^{-2\pi im\theta(z)} ds \right|^2.
$$

Analogue of Parseval for Fourier series.

First key arithmetic fact: each character $e^{-2\pi i m\theta(z)}$ of N corresponds to a Hecke Größencharakter on $\mathbb{Q}(\sqrt{D})$:

$$
\psi_m((a+b\sqrt{D})\mathcal{O})=\left(\frac{a+b\sqrt{D}}{a-b\sqrt{D}}\right)^{\frac{\pi im}{\log \epsilon}}
$$

.

Base Change

Second key arithmetic fact: associated to a Maaß form f on $SL_2(\mathbb{Z})\backslash\mathbb{H}$ is a Hilbert Maaß form F on $SL_2(\mathcal{O})\backslash\mathbb{H}\times\mathbb{H}$.

 F is the base change of f :

$$
L(s, F) = L(s, f)L(s, f \otimes \chi_D).
$$

LHS is a degree 2 *L*-function over $\mathbb{Q}(\sqrt{2})$ D). RHS is a degree 4 L-function over $\mathbb Q$ (product of two degree 2 L-functions over \mathbb{O}).

Hecke eigenvalues of F and f are related:

$$
\sum_{\substack{\mathfrak{n}\subseteq\mathcal{O}\\N(\mathfrak{n})=n}}\lambda_{\mathcal{F}}(\mathfrak{n})=\sum_{ab=n}\lambda_{f}(a)\lambda_{f}(b)\chi_{D}(b).
$$

Waldspurger's Formula

Theorem (Waldspurger (1985)) We have that $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\overline{}$ $\int_M f(z) e^{-2\pi i m\theta(z)} ds$ N \vert 2 ≈ $\Lambda\left(\frac{1}{2}\right)$ $\frac{1}{2}, F \otimes \psi_m$ $\mathsf{\Lambda}(1,\mathsf{sym}^2\,f)$

$$
\approx \frac{L\left(\frac{1}{2}, F \otimes \psi_m\right)}{L(1, \text{sym}^2 f)} \frac{1}{(1+|t_f - \frac{\pi m}{\log \epsilon}|)^{1/2}(1+|t_f + \frac{\pi m}{\log \epsilon}|)^{1/2}} \times \begin{cases} 1 & \text{if } \frac{\pi |m|}{\log \epsilon} \leq t_f, \\ e^{-\pi \left(\frac{\pi |m|}{\log \epsilon} - t_f\right)} & \text{if } \frac{\pi |m|}{\log \epsilon} \geq t_f. \end{cases}
$$

 $\mathcal{L}(s, F \otimes \psi_m)$ is a degree 2 L -function over $\mathbb{Q}(\sqrt{2})$ D).

Remark

Only true because N is a closed geodesic! No connection to L-functions otherwise.

Reduction to Weighted Moment of L-Functions

Goal

To bound $\int_N |f(z)|^2 ds$, we need to bound

$$
\sum_{|m|\leq \frac{\log\epsilon}{\pi}t_{\mathsf{f}}}\frac{L\left(\frac{1}{2},\mathsf{F}\otimes\psi_{m}\right)}{(1+|t_{\mathsf{f}}-\frac{\pi m}{\log\epsilon}|)^{1/2}(1+|t_{\mathsf{f}}+\frac{\pi m}{\log\epsilon}|)^{1/2}}.
$$

Problem is reduced to a weighted first moment of L-functions.

Lindelöf hypothesis immediately implies the essentially optimal bound $O_{\varepsilon}(\lambda^{\varepsilon})$.

Aside

May be possible to show that this is $O(1)$ under the Riemann hypothesis via Harper's method.

Approximate functional equation: insert the Dirichlet polynomial

$$
L\left(\frac{1}{2}, F \otimes \psi_m\right) \approx \sum_{\substack{\mathfrak{n} \subseteq \mathcal{O} \\ N(\mathfrak{n}) \leq (1+|t_f - \frac{\pi n}{\log \epsilon}|)^{1/2}(1+|t_f + \frac{\pi n}{\log \epsilon}|)^{1/2} \\ \approx \sum_{\substack{(a,b) \in \mathbb{Z}^2 \\ \epsilon^{-1} < \frac{a+b\sqrt{D}}{a-b\sqrt{D}} \leq \epsilon}} \frac{\lambda_F((a+b\sqrt{D})\mathcal{O})}{\sqrt{|a^2 - b^2 D|}} \left(\frac{a+b\sqrt{D}}{a-b\sqrt{D}}\right)^{\frac{\pi i m}{\log \epsilon}}.
$$
\n
$$
|a^2 - b^2 \sqrt{D}| \leq (1+|t_f - \frac{\pi n}{\log \epsilon}|)^{1/2}(1+|t_f + \frac{\pi n}{\log \epsilon}|)^{1/2}}
$$

Interchanging Summation

Need to bound

$$
\sum_{|m|\leq \frac{\log\epsilon}{\pi}t_{\mathsf{f}}}\frac{L\left(\frac{1}{2},\mathsf{F}\otimes\psi_{m}\right)}{(1+|t_{\mathsf{f}}-\frac{\pi m}{\log\epsilon}|)^{1/2}(1+|t_{\mathsf{f}}+\frac{\pi m}{\log\epsilon}|)^{1/2}}.
$$

Insert Dirichlet polynomial and interchange order of summation:

$$
\sum_{(a,b)} \frac{\lambda_F((a+b\sqrt{D})\mathcal{O})}{\sqrt{|a^2 - b^2 D|}}
$$
\n
$$
\times \sum_m \frac{1}{(1+|t_f - \frac{\pi m}{\log \epsilon}|)^{1/2}(1+|t_f + \frac{\pi m}{\log \epsilon}|)^{1/2}} \left(\frac{a+b\sqrt{D}}{a-b\sqrt{D}}\right)^{\frac{\pi i m}{\log \epsilon}}
$$

Estimate inner sum via summation by parts: small unless $a+b$ √ um via summation by parts: small unless $a + b\sqrt{D}$ is close to $a - b\sqrt{D}$ (i.e. b small).

Estimate $\lambda_{\it F}((a + b$ √ D O) pointwise via best bound towards $\mathsf{Ramanujan~conjecture:~}|\lambda_{\mathcal{F}}(\mathfrak{n})|\ll_{\varepsilon} \mathrm{N}(\mathfrak{n})^{\vartheta+\varepsilon}.$

.

Sketch of Proof.

- \bullet Use Parseval's identity to expand L^2 -norm as a sum of squares of Fourier coefficients.
- **²** Use Waldspurger's formula to relate to L-functions involving Hecke Größencharaktere and base change of f .
- **3** Insert Dirichlet polynomial for *L*-function.
- **4** Replace sum over ideals with sum over lattice points.
- **5** Interchange order of summation.
- **⁶** Estimate inner sum via summation by parts to restrict to the case that b is small.
- **2** Bound Hecke eigenvalues by estimates towards the Ramanujan conjecture.
- **⁸** Bound weighted sum of lattice points trivially.

Generalisations

Question

Can one do better than the given upper bounds?

Conjecture (Restricted quantum unique ergodicity)

For any nice test function *ψ*, $\lim_{\lambda \to \infty} \int_{N}$ $|f(z)|^2 \psi(z) ds = \frac{1}{e(z)}$ *ℓ*(N) Z N *ψ*(z) dz*.*

Special case of interest: $\psi \equiv 1$.

Theorem (Young (2018))

RQUE holds when f is an Eisenstein series and N is a geodesic segment of a vertical geodesic on $SL_2(\mathbb{Z})\backslash\mathbb{H}$.

When this vertical geodesic from 0 to $i\infty$, this boils down to asymptotics for shifted fourth moments of *ζ*(s).

Thank you!