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The Eigenvalue Problem for the Laplacian
Let (M, g) be a compact (or, more generally, finite volume)
n-dimensional Riemannian manifold without boundary.

Example
the n-sphere
Sn =

{
(x1, . . . , xn+1) ∈ Rn+1 : x2

1 + · · · + x2
n+1 = n

}
the n-torus Tn = {(x1, . . . , xn) ∈ (R/Z)n}

We shall study Laplacian eigenfunctions:
L2-normalised solutions f ∈ L2(M) to the eigenvalue problem

∆f = λf ,

where the Laplace–Beltrami operator ∆ is

∆ := − 1√
| det g |

n∑
j,k=1

∂

∂xj
g jk
√

| det g | ∂
∂xk

and λ ∈ [0,∞) is the Laplacian eigenvalue of f .
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Examples: Torus
These eigenfunctions and eigenvalues need not have closed forms.

For particularly nice manifolds M, such as spheres or tori, we can
explicitly describe the Laplacian eigenfunctions and eigenvalues.

Example
The Laplace–Beltrami operator on Tn is

∆ = −
n∑

j=1

∂2

∂x2
j
.

A basis of L2(Tn) consisting of Laplacian eigenfunctions
f (x1, . . . , xn) is given by

{sin(2π(x1y1 + · · · + xnyn)), cos(2π(x1y1 + · · · + xnyn)) :
(y1, . . . , yn) ∈ Zn}

with eigenvalues 4π2(y2
1 + · · · + y2

n ).
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Examples: Torus
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Examples: Sphere
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Examples: Bunimovich Stadium
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Examples: Modular Surface
Interesting setting for number theorists:
Riemannian locally symmetric spaces M = Γ\G/K ;

G is a Lie group,
K is a maximal compact subgroup of G ,
Γ is a lattice in G .

Simplest interesting case: G = SL2(R), K = SO(2), Γ = SL2(Z);
G/K ∼= H is the upper half-plane

H = {z = x + iy ∈ C : y > 0},

Γ\G/K ∼= SL2(Z)\H is the modular surface

SL2(Z)\H =
{

z = x + iy ∈ H : −1
2 < x < 1

2 , x2 + y2 > 1
}
,

Laplacian eigenfunctions are automorphic forms.
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Examples: Modular Surface

H is a negatively curved hyperbolic surface.

SL2(Z)\H inherits a hyperbolic metric from H.

The Laplacian is ∆ = −y2
(
∂2

∂x2 + ∂2

∂y2

)
.

The volume measure on SL2(Z)\H is dvol(z) = 3
π

dx dy
y2 .

Nonconstant eigenfunctions of ∆ on H that are SL2(Z)-invariant
(equivalently, nonconstant Laplacian eigenfunctions on SL2(Z)\H)
are Maaß forms:

type of automorphic form closely related to classical
holomorphic modular forms.
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Examples: Modular Surface

For each k ∈ 2N, one can instead define the weight k Laplacian

∆k := −y2
(
∂2

∂x2 + ∂2

∂y2

)
+ iky ∂

∂x .

If g ∈ L2 (SL2(Z)\H) satisfies the automorphic eigenvalue problem

∆kg = k
2

(
1 − k

2

)
g ,

g
(az + b

cz + d

)
=
( cz + d

|cz + d |

)k
g(z) for all γ =

(
a b
c d

)
∈ SL2(Z),

the function G(z) := y−k/2g(x + iy) is a holomorphic modular
form of weight k.
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Examples: Modular Surface
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L2-Restriction Bounds for Laplacian Eigenfunctions

Question
In the large eigenvalue limit, how big is the restriction of a
Laplacian eigenfunction to a chosen submanifold?

Natural way to study the size of restrictions to a submanifold N of
eigenfunctions f on a manifold M is to estimate their restricted
L2-norms in terms of λ:

∥f |N∥2 :=
(∫

N
|f (x)|2 dvolg(x)

) 1
2
.

Heuristic
If M and N are arithmetic, then ∥f |N∥2

2 is equal to a weighted
moment of L-functions.
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Bilinear L2-Norm Bounds for Maaß Forms
Example
Take M = SL2(Z)\H × SL2(Z)\H and N = SL2(Z)\H (embedded
diagonally).

Laplacian eigenfunctions on M are of the form
F (z1, z2) = f1(z1)f2(z2), where f1, f2 are Maaß forms.
The restricted L2-norm of F is

∥F |N∥2
2 =

∫
SL2(Z)\H

|f1(z)f2(z)|2 3
π

dx dy
y2 .

In particular, if f1 = f2, this is the L4-norm of f1.
By Parseval’s identity for L2(SL2(Z)\H) and the
Watson–Ichino triple product formula,

∥F |N∥2
2 ≈

∑
f

Λ
(

1
2 , f ⊗ f1 ⊗ f2

)
Λ(1, sym2 f )Λ(1, sym2 f1)Λ(1, sym2 f2) .
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Geodesic L2-Restriction Bounds
Question
Let M be a 2-dimensional compact (or, more generally, finite
volume) Riemannian manifold, and let N be a finite length geodesic
segment on M. In the large eigenvalue limit, how large is ∥f |N∥2?

Theorem (Burq–Gérard–Tzvetkov (2007))
We have that

∥f |N∥2 ≪ λ
1
8 .

Moreover, this is sharp if M = S2.

This is the convexity bound.

Question
Can one do better for arithmetic surfaces M?
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Geodesics on SL2(Z)\H
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Geodesic L2-Restriction Bounds on the Modular Surface

Geodesics on H are either vertical lines or semicircles centred on
the real axis.

Geodesics on SL2(Z)\H are the projections of geodesics on H.

Theorem (Marshall (2016))
Let M be an arithmetic 2-dimensional compact Riemannian
manifold and N be a finite length geodesic segment on M. Then

∥f |N∥2 ≪ε λ
1
8 − 1

56 +ε.

Proof uses the amplified pre-trace formula; no connection to
moments of L-functions.
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Geodesic L2-Restriction Bounds on the Modular Surface

Question
Can one do better if not only the surface M is arithmetic but the
geodesic segment N is also arithmetic?

Theorem (Ghosh–Reznikov–Sarnak (2013))
Let M = SL2(Z)\H and N be a finite length geodesic segment of
the vertical geodesic from 0 to i∞. Then ∥f |N∥2 ≪ε λ

ε.

Proof uses moments!
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Vertical Geodesic L2-Restriction Bounds
Sketch of proof.
We show more generally that∫ ∞

0
|f (iy)|2 dy

y ≪ε λ
ε.

By Parseval’s identity for L2((0,∞)) (i.e. for the Mellin transform),
LHS is

1
2π

∫ ∞

−∞

∣∣∣∣∫ ∞

0
f (iy)y it dy

y

∣∣∣∣2 dt.

The inner squared integral is equal to∣∣∣Λ (1
2 + it, f

)∣∣∣2
Λ(1, sym2 f ) ≈

∣∣∣L (1
2 + it, f

)∣∣∣2
L(1, sym2 f )

1
(1 + |tf − t|)1/2(1 + |tf + t|)1/2

×
{

1 if |t| ≤ tf ,
e−π(|t|−tf ) if |t| ≥ tf ,

where λ = 1/4 + t2
f .
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Vertical Geodesic L2-Restriction Bounds
Sketch of proof (cont’d).
Since 1/L(1, sym2 f ) ≪ε λ

ε, just need to show

∫ tf

−tf

∣∣∣L (1
2 + it, f

)∣∣∣2
(1 + |tf − t|)1/2(1 + |tf + t|)1/2 dt ≪ε λ

ε.

Trivially holds under the Lindelöf hypothesis; need to show this
unconditionally.

Aside
Were f the Eisenstein series E (z , 1/2 + itf ), then
L(s, f ) = ζ(s + itf )ζ(s − itf ). Would need to show∫ tf

−tf

∏
±1,±2 ζ

(
1
2 ±1 itf ±2 it

)
(1 + |tf − t|)1/2(1 + |tf + t|)1/2 dt ≪ε tε

f .

Shifted fourth moment of the Riemann zeta function!
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Vertical Geodesic L2-Restriction Bounds

Sketch of proof (cont’d).
Need to show∫ tf

−tf

∣∣∣L (1
2 + it, f

)∣∣∣2
(1 + |tf − t|)1/2(1 + |tf + t|)1/2 dt ≪ε λ

ε.

Approximate functional equations: insert the Dirichlet polynomial

L
(1

2 + it, f
)

≈
∑

n≤(1+|tf −t|)1/2(1+|tf +t|)1/2

λf (n)
n 1

2 +it
.

Interchange integration and double summation, yielding∑
m,n

λf (m)λf (n)√
mn

∫ 1
(1 + |tf − t|)1/2(1 + |tf + t|)1/2

(m
n

)it
dt.

Estimate the integral via integration by parts: small unless m is
close to n. Use Cauchy–Schwarz to separate sum over m and n.
Finally, bound each sum via the fact (due to Iwaniec) that∑

n≤x |λf (n)|2 ≪ε tε
f x .
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Closed Geodesic L2-Restriction Bounds

Question
Can one do better for infinitely many geodesics on SL2(Z)\H?

Theorem (H.–Thorner (2022+))
Let N be a closed geodesic on SL2(Z)\H. Then

∥f |N∥2 ≪ε λ
ϑ+ε,

where ϑ = 7
64 is the best known exponent towards the generalised

Ramanujan conjecture for Maaß forms.

Assuming the generalised Ramanujan conjecture, so that ϑ = 0,
this is essentially sharp.

Peter Humphries Geodesic Restrictions of Maaß Forms



Closed Geodesics on SL2(Z)\H

Peter Humphries Geodesic Restrictions of Maaß Forms



Closed Geodesics on SL2(Z)\H

Key properties of closed geodesics:
Bijective correspondence with narrow ideal classes of real
quadratic number fields Q(

√
D) (arithmetic submanifold)

Length is 2 log ϵ, where ϵ is the fundamental unit of Q(
√

D)
Infinitely many closed geodesics
Union of all closed geodesics is dense in SL2(Z)\H
Topologically equivalent to a circle
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Fourier Analysis on Closed Geodesics

First step of proof: Parseval’s identity for L2(N).

Since closed geodesics are topologically circles, we get∫
N

|f (z)|2 ds =
∞∑

m=−∞

∣∣∣∣∫
N

f (z)e−2πimθ(z) ds
∣∣∣∣2 .

Analogue of Parseval for Fourier series.

First key arithmetic fact: each character e−2πimθ(z) of N
corresponds to a Hecke Größencharakter on Q(

√
D):

ψm((a + b
√

D)O) =
(

a + b
√

D
a − b

√
D

) πim
log ϵ

.
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Base Change
Second key arithmetic fact: associated to a Maaß form f on
SL2(Z)\H is a Hilbert Maaß form F on SL2(O)\H × H.

F is the base change of f :

L(s,F ) = L(s, f )L(s, f ⊗ χD).

LHS is a degree 2 L-function over Q(
√

D).
RHS is a degree 4 L-function over Q (product of two degree 2
L-functions over Q).

Hecke eigenvalues of F and f are related:∑
n⊆O

N(n)=n

λF (n) =
∑

ab=n
λf (a)λf (b)χD(b).
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Waldspurger’s Formula
Theorem (Waldspurger (1985))
We have that∣∣∣∣∫

N
f (z)e−2πimθ(z) ds

∣∣∣∣2 ≈
Λ
(

1
2 ,F ⊗ ψm

)
Λ(1, sym2 f )

≈
L
(

1
2 ,F ⊗ ψm

)
L(1, sym2 f )

1
(1 + |tf − πm

log ϵ |)1/2(1 + |tf + πm
log ϵ |)1/2

×


1 if π|m|

log ϵ ≤ tf ,

e−π( π|m|
log ϵ

−tf ) if π|m|
log ϵ ≥ tf .

L(s,F ⊗ ψm) is a degree 2 L-function over Q(
√

D).

Remark
Only true because N is a closed geodesic! No connection to
L-functions otherwise.
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Reduction to Weighted Moment of L-Functions

Goal
To bound

∫
N |f (z)|2 ds, we need to bound

∑
|m|≤ log ϵ

π
tf

L
(

1
2 ,F ⊗ ψm

)
(1 + |tf − πm

log ϵ |)1/2(1 + |tf + πm
log ϵ |)1/2 .

Problem is reduced to a weighted first moment of L-functions.

Lindelöf hypothesis immediately implies the essentially optimal
bound Oε(λε).

Aside
May be possible to show that this is O(1) under the Riemann
hypothesis via Harper’s method.
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Approximate Functional Equation

Approximate functional equation: insert the Dirichlet polynomial

L
(1

2 ,F ⊗ ψm

)
≈

∑
n⊆O

N(n)≤(1+|tf − πn
log ϵ

|)1/2(1+|tf + πn
log ϵ

|)1/2

λF (n)ψm(n)√
N(n)

≈
∑

(a,b)∈Z2

ϵ−1< a+b
√

D
a−b

√
D

≤ϵ

|a2−b2√
D|≤(1+|tf − πn

log ϵ
|)1/2(1+|tf + πn

log ϵ
|)1/2

λF ((a + b
√

D)O)√
|a2 − b2D|

(
a + b

√
D

a − b
√

D

) πim
log ϵ

.
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Interchanging Summation

Need to bound∑
|m|≤ log ϵ

π
tf

L
(

1
2 ,F ⊗ ψm

)
(1 + |tf − πm

log ϵ |)1/2(1 + |tf + πm
log ϵ |)1/2 .

Insert Dirichlet polynomial and interchange order of summation:∑
(a,b)

λF ((a + b
√

D)O)√
|a2 − b2D|

×
∑
m

1
(1 + |tf − πm

log ϵ |)1/2(1 + |tf + πm
log ϵ |)1/2

(
a + b

√
D

a − b
√

D

) πim
log ϵ

.

Estimate inner sum via summation by parts: small unless a + b
√

D
is close to a − b

√
D (i.e. b small).

Estimate λF ((a + b
√

D)O) pointwise via best bound towards
Ramanujan conjecture: |λF (n)| ≪ε N(n)ϑ+ε.
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Key Steps of Proof

Sketch of Proof.
1 Use Parseval’s identity to expand L2-norm as a sum of squares

of Fourier coefficients.
2 Use Waldspurger’s formula to relate to L-functions involving

Hecke Größencharaktere and base change of f .
3 Insert Dirichlet polynomial for L-function.
4 Replace sum over ideals with sum over lattice points.
5 Interchange order of summation.
6 Estimate inner sum via summation by parts to restrict to the

case that b is small.
7 Bound Hecke eigenvalues by estimates towards the

Ramanujan conjecture.
8 Bound weighted sum of lattice points trivially.

Peter Humphries Geodesic Restrictions of Maaß Forms



Generalisations
Question
Can one do better than the given upper bounds?

Conjecture (Restricted quantum unique ergodicity)
For any nice test function ψ,

lim
λ→∞

∫
N

|f (z)|2ψ(z) ds = 1
ℓ(N)

∫
N
ψ(z) dz .

Special case of interest: ψ ≡ 1.

Theorem (Young (2018))
RQUE holds when f is an Eisenstein series and N is a geodesic
segment of a vertical geodesic on SL2(Z)\H.

When this vertical geodesic from 0 to i∞, this boils down to
asymptotics for shifted fourth moments of ζ(s).
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Thank you!
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