

### Quantum variance for automorphic forms

# Bingrong Huang (SDU) (Joint work with Stephen Lester (KCL))

### July 27, 2022

#### Moments of L-functions Workshop

### Automorphic forms

2 Quantum variances for Hecke-Maass cusp forms and Eisenstein series

#### 3 Dihedral Maass forms and their quantum variance

#### 4 Moments of *L*-functions

# Hyperbolic surfaces

- $\mathbb{H} = \{z = x + iy : y > 0\}$  the upper half-plane with measure  $d\mu z = dxdy/y^2$ . •  $\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$  the Laplace operator.
- Gauss curvature on  $\mathbb{H}$  is negative (=-1).
- Geodesics are semicircles subtended on y = 0 and vertical lines.

• 
$$\Gamma = \operatorname{SL}_2(\mathbb{Z})$$
 and  $\Gamma_0(D) = \{\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{D}\}.$   
 $\Gamma \curvearrowright \mathbb{H}$  as fractional linear transforms.

- $\mathbb{X} = \Gamma_0(D) \setminus \mathbb{H}$  a hyperbolic surface.
- Gauss curvature on  $\mathbb X$  is negative  $\Rightarrow$  The geodesic flow on  $T^1\mathbb X$  is chaotic.



### Hecke–Maass forms

A cuspidal Hecke–Maass newform  $\phi$  of level D with a nebentypus character  $\chi$  of modulus D satisfies the automorphy condition

$$\phi(\gamma z) = \chi(d)\phi(z), \quad \gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \mathsf{\Gamma}_0(D), \quad z \in \mathbb{H},$$

and is an eigenfunction of the Laplace operator  $\Delta$  with eigenvalue  $\lambda_{\phi}$ , and of the Hecke operators, and has no zero-th term in the Fourier expansion at any cusp. Define the spectral parameter  $t_{\phi} \geq 0$  by  $\lambda_{\phi} = 1/4 + t_{\phi}^2$ .

Weyl's law (Selberg):

$$\#\{\phi: t_{\phi} \leq T\} \sim rac{\operatorname{\mathsf{vol}}(\mathbb{X})}{4\pi}T^2.$$

Here we have  $\operatorname{vol}(\mathbb{X}) = \frac{\pi}{3} D \prod_{p|D} (1 + p^{-1}).$ 

Let  $\{u_j\}_{j=1}^{\infty}$  be an orthonormal basis of the cuspidal Hecke–Maass forms, which corresponding to the discrete spectrum. The continuous spectrum for  $SL_2(\mathbb{Z})\setminus\mathbb{H}$  is parametrized by Eisenstein series E(z,s).

# Value distribution



This depicts the densities of a sequence of Maass forms on the hyperbolic surface.

< ロ > < 同 > < 三 > < 三

# Quantum Unique Ergodicity

For a test function  $\psi:\mathbb{X}\rightarrow\mathbb{C},$  define

$$\mu_j(\psi) := \langle \psi, |u_j|^2 \rangle = \int_{\mathbb{X}} \psi(z) |u_j(z)|^2 \frac{\mathrm{d} x \mathrm{d} y}{y^2}, \quad \mu_t(\psi) := \langle \psi, |E(*, 1/2 + it)|^2 \rangle.$$

Quantum Unique Ergodicity (Rudnick-Sarnak conjecture 1994):

$$\mu_j(\psi)\sim rac{3}{\pi}\int_{\mathbb{X}}\psi(z)rac{\mathrm{d}x\mathrm{d}y}{y^2}, \quad \mathrm{as}\; j o\infty.$$

• Luo–Sarnak 1995:

$$u_t(\psi) \sim rac{6}{\pi} \log t \int_{\mathbb{X}} \psi(z) rac{\mathrm{d}x \mathrm{d}y}{y^2}, \quad \mathrm{as} \ t o \infty.$$

• Sarnak 2001 & Liu-Ye 2002: QUE holds for dihedral Maass forms.

- Lindenstrauss 2006 & Soundararajan 2010: QUE holds for Hecke–Maass cusp forms.
- Holowinsky and Soundararajan 2010: QUE holds for holomorphic Hecke eigenforms.

### Quantum variance for cusp forms

Luo–Sarnak 1995, Zhao 2010, Sarnak–Zhao 2019, and Nelson 2016-2019 computed the quantum variance for the discrete spectrum. E.g.

### Theorem (Luo–Sarnak 2004; Zhao 2010)

Define the quantum variance for cusp forms by

$$Q_{\mathcal{C}}(\phi,\psi) := \lim_{T \to \infty} rac{1}{T} \sum_{t_j \sim T} \mu_j(\phi) \overline{\mu_j(\psi)},$$

for fixed  $\phi, \psi \in \{u_j\}$ . Then we have

$$Q_{\mathcal{C}}(\phi,\psi) = \begin{cases} c(\phi)\mathcal{L}(1/2,\phi)V_{cl}(\phi), & \text{if } \phi = \psi \text{ is even,} \\ 0, & \text{otherwise,} \end{cases}$$

with the classical variance

$$\mathrm{V}_{\mathrm{cl}}(\phi) = \frac{\left|\Gamma(\frac{1}{4} + \frac{it_{\phi}}{2})\right|^4}{2\pi |\Gamma(\frac{1}{2} + it_{\phi})|^2}.$$

Tools: Watson's formula, trace formulas, Poincaré series, Hecke operators, 👵 👝

## Quantum variance for Eisenstein series

Recall that 
$$\mu_t(\psi) = \langle \psi, |E(*, 1/2 + it)|^2 \rangle$$
.

### Theorem (H. 2021)

Define the quantum variance for Eisenstein series by

$$Q_E(\phi,\psi) := \lim_{T \to \infty} \frac{1}{\log T} \int_T^{2T} \mu_t(\phi) \overline{\mu_t(\psi)} dt,$$

for  $\phi, \psi \in \{u_j\}$ . Then we have

$$Q_{E}(\phi,\psi) = \begin{cases} C(\phi)L(1/2,\phi)^{2}V_{cl}(\phi), & \text{if } \phi = \psi \text{ is even,} \\ 0, & \text{otherwise,} \end{cases}$$

where  $C(\phi)$  is an explicit constant depending on  $\phi$ .

#### Remark:

- In fact, we proved asymptotic formula with quantitative error terms.
- Rudnick-Soundararajan (2005) showed higher moments blow up (no CLT).

D > 0 squarefree and  $D \equiv 1 \pmod{4}$ .

 $F = \mathbb{Q}(\sqrt{D})$  be a fixed real quadratic fields with discriminant D.

For simplicity, we assume that F has the narrow class number 1, and D is a product of two distinct primes congruent to 3 (mod 4). For example D = 21.

$$\begin{split} \omega_D &= \frac{1+\sqrt{D}}{2}.\\ \epsilon_D > 1 \text{ the fundamental unit of } F.\\ \mathcal{O}_F &= \mathbb{Z}[\omega_D] \text{ the ring of integers of } F.\\ U_F &= \{\pm 1\} \times \epsilon_D^{\mathbb{Z}} \text{ the group of units.} \end{split}$$

For integer  $k \neq 0$ , we have the **Hecke Grössencharacter**  $\Xi_k$  of *F* defined by

$$\Xi_k((\alpha)) := \left| \frac{\alpha}{\tilde{\alpha}} \right|^{\frac{\pi i k}{\log \epsilon_D}} \quad \text{for ideal } (\alpha) \subset \mathcal{O}_F \text{ with generator } \alpha,$$

where  $\tilde{\alpha}$  is the conjugate of  $\alpha$  under the nontrivial automorphism of *F*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

### Dihedral Maass forms

Let  $\mathcal{B}_0^*(D, \chi_D)$  denote the set of  $L^2$ -normalized newforms of weight 0 for  $\Gamma_0(D)$ , with nebentypus character  $\chi_D$  (the Kronecker symbol). Maass showed that the theta-like series associated to  $\Xi_k$  by

$$\begin{split} \phi_k(z) &:= \rho_k(1) \; y^{1/2} \sum_{\substack{\mathfrak{a} \subset \mathcal{O}_F \\ \mathfrak{a} \neq \{0\}}} \Xi_k(\mathfrak{a}) \mathcal{K}_{it_k}(2\pi \operatorname{\mathsf{N}}(\mathfrak{a})y) \big( e(\operatorname{\mathsf{N}}(\mathfrak{a})x) + e(-\operatorname{\mathsf{N}}(\mathfrak{a})x) \big) \\ &\in \mathcal{B}_0^*(D,\chi_D), \end{split}$$

where  $z = x + iy \in \mathbb{H}$ ,  $t_k := t_{\phi_k} = \pi k / \log \epsilon_D$  and  $\phi_k$  has Laplace eigenvalue  $1/4 + t_k^2$ . Here  $N(\mathfrak{a}) = \#\mathcal{O}_F/\mathfrak{a}$  is the norm of a nonzero ideal  $\mathfrak{a} \subset \mathcal{O}_F$ ,  $K_s(z)$  is the modified Bessel function, and  $\rho_k(1)$  is the positive real number such that  $\phi_k$  is  $L^2$ -normalized, i.e.,

$$\|\phi_k\|_2^2 = \int_{\Gamma_0(D)\setminus\mathbb{H}} |\phi_k(z)|^2 \frac{\mathrm{d} x \mathrm{d} y}{y^2} = 1.$$

Weyl's law: Let  $t_k := \frac{\pi k}{\log \epsilon_D}$ , then

$$\#\{\phi_k: 0 < t_k \leq T\} \sim \frac{\log \epsilon_D}{\pi} T.$$

Define

$$\mu_k(\psi) := \langle \psi, |\phi_k|^2 \rangle.$$

Define the quantum covariance for dihedral Maass forms by

$$Q(\psi_1,\psi_2;K;\Phi):=\sum_{k\in\mathbb{Z}}\mu_k(\psi_1)\overline{\mu_k(\psi_2)}\Phi\left(rac{k}{K}
ight)$$

for  $\psi_1, \psi_2 \in L^2_{cusp}(\mathbb{X})$ .

Define the harmonic weighted quantum covariance by

$$Q^{\mathrm{h}}(\psi_1,\psi_2;K;\Phi):=\sum_{k\in\mathbb{Z}}L(1,\phi_{2k})^2\mu_k(\psi_1)\overline{\mu_k(\psi_2)}\Phi\left(rac{k}{K}
ight),$$

where  $L(s, \phi_{2k})$  is the *L*-function of  $\phi_{2k}$ .

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

#### Theorem (H.–Lester 2020)

Let  $\psi$  be an even Hecke–Maass cuspidal newform on  $\Gamma_0(D).$  Then as  $K\to\infty$  we have that

$$Q^{\mathrm{h}}(\psi,\psi;\mathsf{K};\Phi) = \widetilde{\Phi}(0)A^{\mathrm{h}}(\psi) \, \mathcal{L}(rac{1}{2},\psi)\mathcal{L}(rac{1}{2},\psi imes\chi_{\mathcal{D}})\mathrm{V}_{\mathrm{cl}}(\psi) + o(1),$$

where

$$\mathcal{A}^{\rm h}(\psi) = \frac{\pi \log \epsilon_D}{2D^2 \zeta_D(2) \mathcal{L}(1,\chi_D)} \left( 1 + \frac{\lambda_\psi(p_1)}{\sqrt{p_1}} + \frac{\lambda_\psi(p_2)}{\sqrt{p_2}} + \frac{\lambda_\psi(D)}{\sqrt{D}} \right).$$

Assume the Generalized Ramanujan Conjecture (GRC). Then as  $\mathcal{K} \to \infty$  we have that

$$egin{aligned} \mathcal{Q}(\psi,\psi;\mathcal{K};\Phi) &= \widetilde{\Phi}(0)\mathcal{A}(\psi)\,\mathcal{L}(rac{1}{2},\psi)\mathcal{L}(rac{1}{2},\psi imes\chi_{\mathcal{D}})\mathcal{V}(\psi) + o(1), \end{aligned}$$

where  $A(\psi) = A^{h}(\psi)C'_{D,\psi}$ , with an explicit  $C'_{D,\psi}$ .

Application: If  $A^{h}(\psi) L(\frac{1}{2}, \psi)L(\frac{1}{2}, \psi \times \chi_{D}) \neq 0$ , then  $\mu_{k}(\psi) = \Omega(k^{-1/2-\varepsilon})$ . Conjecture:  $\mu_{k}(\psi) = O(k^{-1/2+\varepsilon})$ . GRH implies this conjecture.

イロン 不通 とうほう うほう 二日

### Theorem (H.–Lester 2020)

Assume Generalized Riemann Hypothesis (GRH). Let  $\psi_1, \psi_2$  be two orthogonal even Hecke–Maass cuspidal newforms. Then we have as  $K \to \infty$  that

 $Q(\psi_1,\psi_2;K;\Phi)\longrightarrow 0.$ 

In particular, the quadratic form  $Q = \lim_{K \to \infty} Q(\cdot, \cdot; K; \Phi)$  is diagonalized by the orthonormal basis of Hecke–Maass cuspidal newforms on  $\mathcal{B}_0^*(D)$ .

Using the method of Rudnick–Soundararajan for lower bounds for moments of *L*-functions one can show the moments of  $\mu_k(\psi)$  blow up.

Let  $\phi$ ,  $u_j$  be Hecke–Maass forms of level 1,  $\phi_k$  be a dihedral Maass form of level D, and  $\psi$  a Hecke–Maass newform of level D with trivial nebentypus.

• Rankin–Selberg method:

$$|\mu_t(\phi)|^2 = \frac{|\Lambda(1/2 + 2it, \phi)|^2 \Lambda(1/2, \phi)^2}{2|\xi(1 + 2it)|^4 \Lambda(1, \mathsf{sym}^2 \phi)},$$

where  $\Lambda$  means the corresponding completed *L*-functions and  $\xi(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s)$ .

• Watson–Ichino formula:

$$|\mu_j(\phi)|^2 = \frac{\Lambda(1/2, \operatorname{sym}^2 u_j \times \phi)\Lambda(1/2, \phi)}{8\Lambda(1, \operatorname{sym}^2 u_j)^2\Lambda(1, \operatorname{sym}^2 \phi)},$$
$$|\mu_k(\psi)|^2 = \frac{1}{8\sqrt{D}} \frac{\Lambda(\frac{1}{2}, \psi)\Lambda(\frac{1}{2}, \psi \times \chi_D)\Lambda(\frac{1}{2}, \psi \times \phi_{2k})}{\Lambda(1, \operatorname{sym}^2 \psi)\Lambda(1, \chi_D)^2\Lambda(1, \phi_{2k})^2}$$

(ロ) (四) (三) (三) (三)

# Proof ingredients: Moments of L-functions

#### Proposition (H.–Lester 2020)

Let  $\psi$  be an even Hecke–Maass cuspidal newform on  $\Gamma_0(D)$  with trivial nebentypus and  $\eta_{\psi}(D)$  denote the  $W_D$ -eigenvalue of  $\psi$ , where  $W_D$  is the Atkin-Lehner operator. Suppose  $\eta_{\psi}(D) = 1$ . Let w be a Schwartz function with compact support in  $[\frac{1}{2}, 2]$  such that  $w^{(j)}(x) \ll P^j$ , where  $P \ge 1$  is a large parameter. Then there exists  $A_0 > 0$  such that

$$\sum_{k\in\mathbb{Z}} L(\frac{1}{2},\psi\times\phi_{2k}) w\left(\frac{k}{K}\right) = \tilde{w}(1)\cdot C_{D,\psi}\cdot K + O(P^{A_0}\cdot K^{\frac{1}{2}+\vartheta+\varepsilon}).$$

where the implied constant depends at most on  $\psi, D.$  Here  $\vartheta$  is the bound toward the Ramanujan–Selberg conjecture and

$$C_{D,\psi} = 2 \cdot \frac{L(1,\chi_D)}{\zeta_D(2)} L(1,\operatorname{sym}^2\psi) \left(1 + \frac{\lambda_\psi(p_1)}{\sqrt{p_1}} + \frac{\lambda_\psi(p_2)}{\sqrt{p_2}} + \frac{\lambda_\psi(D)}{\sqrt{D}}\right)$$

where  $\zeta_D(s) = \zeta(s) \prod_{p|D} (1-p^{-s})$ . Recall that  $\tilde{w}(s) := \int_0^\infty w(x) x^{s-1} dx$  is the Mellin transform of w.

# Proof ingredients: Twisted moments of L-functions

#### Proposition (H.–Lester 2020)

Assume GRC. Suppose  $\eta_{\psi}(D) = 1$ . Then there exists  $A_0 > 0$  such that for  $n \in \mathbb{N}$ 

$$\sum_{k\in\mathbb{Z}} L(\frac{1}{2},\psi\times\phi_{2k})\cdot\lambda_{2k}(n) w\left(\frac{k}{K}\right) = \tilde{w}(1)\cdot C_{D,\psi}\cdot h\left(\frac{n}{(n,D)}\right)\cdot K + O((Pn)^{A_0}\cdot K^{\frac{1}{2}+\vartheta+\varepsilon}),$$

for certain multiplicative function h.

#### Proposition (H.–Lester 2020)

Assume GRC. Suppose  $\eta_{\psi}(D) = 1$ . Also, suppose  $P \leq K^{\delta}$  for some  $\delta > 0$  sufficiently small. Then for any  $A \geq 1$  we have that

$$\sum_{k\in\mathbb{Z}}\frac{L(\frac{1}{2},\psi\times\phi_{2k})}{L(1,\phi_{2k})^2}w\left(\frac{k}{K}\right)=\tilde{w}(1)\cdot C'_{D,\psi}\cdot C_{D,\psi}\cdot K+O\left(\frac{K}{(\log K)^A}\right)$$

where  $C'_{D,\psi}$  is an explicit constant depending on D and  $\psi$ .

### Theorem (Soundararajan 2009)

Let  $M_k(T) := \int_0^T |\zeta(1/2 + it)|^{2k} dt$ . Assume RH. Then we have

$$T(\log T)^{k^2} \ll_k M_k(T) \ll_{k,\varepsilon} T(\log T)^{k^2+\varepsilon}.$$

### Proposition (H.–Lester 2020)

Assume GRH. Let  $n \ge 1$ . Also, let  $\psi_1, \ldots, \psi_n$  be pairwise orthogonal Hecke–Maass cuspidal newforms on  $\Gamma_0(D)$  with trivial nebentypus. Then for any real numbers  $\ell_1, \cdots, \ell_n > 0$  we have that

$$\sum_{K < k \leq 2K} L(\frac{1}{2}, \psi_1 \times \phi_{2k})^{\ell_1} \cdots L(\frac{1}{2}, \psi_n \times \phi_{2k})^{\ell_n} \ll K \cdot (\log K)^{\frac{\ell_1(\ell_1-1)}{2} + \cdots + \frac{\ell_n(\ell_n-1)}{2} + \varepsilon}.$$

 $n=2, \ \ell_1=\ell_2=1/2 \quad \Rightarrow \quad \text{Quantum covariance for dMF vanishes.}$ 

### Thank you for your attention!