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Hyperbolic surfaces

H = {z = x + iy : y > 0} the upper half-plane with measure dµz = dxdy/y2.

∆ = −y2
(
∂2

∂x2 + ∂2

∂y2

)
the Laplace operator.

Gauss curvature on H is negative (= −1).
Geodesics are semicircles subtended on y = 0 and vertical lines.

Γ = SL2(Z) and Γ0(D) = {γ =
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod D)}.

Γ y H as fractional linear transforms.
X = Γ0(D)\H a hyperbolic surface.
Gauss curvature on X is negative ⇒ The geodesic flow on T 1X is chaotic.

Geodesics in H
SL2(Z)\H Γ0(13)\H A projected geodesic
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Hecke–Maass forms

A cuspidal Hecke–Maass newform φ of level D with a nebentypus character χ of
modulus D satisfies the automorphy condition

φ(γz) = χ(d)φ(z), γ =
(
a b
c d

)
∈ Γ0(D), z ∈ H,

and is an eigenfunction of the Laplace operator ∆ with eigenvalue λφ, and of the
Hecke operators, and has no zero-th term in the Fourier expansion at any cusp.
Define the spectral parameter tφ ≥ 0 by λφ = 1/4 + t2

φ.

Weyl’s law (Selberg):

#{φ : tφ ≤ T} ∼ vol(X)

4π
T 2.

Here we have vol(X) = π
3 D

∏
p|D

(1 + p−1).

Let {uj}∞j=1 be an orthonormal basis of the cuspidal Hecke–Maass forms, which
corresponding to the discrete spectrum. The continuous spectrum for SL2(Z)\H
is parametrized by Eisenstein series E (z , s).
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Value distribution

This depicts the densities of a sequence of
Maass forms on the hyperbolic surface.
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Quantum Unique Ergodicity

For a test function ψ : X→ C, define

µj(ψ) := 〈ψ, |uj |2〉 =

∫
X
ψ(z)|uj(z)|2 dxdy

y2
, µt(ψ) := 〈ψ, |E (∗, 1/2 + it)|2〉.

Quantum Unique Ergodicity (Rudnick–Sarnak conjecture 1994):

µj(ψ) ∼ 3

π

∫
X
ψ(z)

dxdy

y2
, as j →∞.

Luo–Sarnak 1995:
µt(ψ) ∼ 6

π
log t

∫
X
ψ(z)

dxdy

y2
, as t →∞.

Sarnak 2001 & Liu–Ye 2002: QUE holds for dihedral Maass forms.

Lindenstrauss 2006 & Soundararajan 2010: QUE holds for Hecke–Maass cusp
forms.

Holowinsky and Soundararajan 2010: QUE holds for holomorphic Hecke
eigenforms.
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Quantum variance for cusp forms

Luo–Sarnak 1995, Zhao 2010, Sarnak–Zhao 2019, and Nelson 2016-2019
computed the quantum variance for the discrete spectrum. E.g.

Theorem (Luo–Sarnak 2004; Zhao 2010)

Define the quantum variance for cusp forms by

QC (φ, ψ) := lim
T→∞

1

T

∑
tj∼T

µj(φ)µj(ψ),

for fixed φ, ψ ∈ {uj}. Then we have

QC (φ, ψ) =

{
c(φ)L(1/2, φ)Vcl(φ), if φ = ψ is even,
0, otherwise,

with the classical variance

Vcl(φ) =

∣∣Γ( 1
4 +

itφ
2 )
∣∣4

2π|Γ( 1
2 + itφ)|2

.

Tools: Watson’s formula, trace formulas, Poincaré series, Hecke operators, ...
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Quantum variance for Eisenstein series

Recall that µt(ψ) = 〈ψ, |E (∗, 1/2 + it)|2〉.

Theorem (H. 2021)

Define the quantum variance for Eisenstein series by

QE (φ, ψ) := lim
T→∞

1
log T

∫ 2T

T
µt(φ)µt(ψ)dt,

for φ, ψ ∈ {uj}. Then we have

QE (φ, ψ) =

{
C (φ)L(1/2, φ)2Vcl(φ), if φ = ψ is even,
0, otherwise,

where C (φ) is an explicit constant depending on φ.

Remark:

In fact, we proved asymptotic formula with quantitative error terms.

Rudnick–Soundararajan (2005) showed higher moments blow up (no CLT).
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Hecke Grössencharacters

D > 0 squarefree and D ≡ 1 (mod 4).

F = Q(
√
D) be a fixed real quadratic fields with discriminant D.

For simplicity, we assume that F has the narrow class number 1, and D is a
product of two distinct primes congruent to 3 (mod 4).
For example D = 21.

ωD = 1+
√
D

2 .
εD > 1 the fundamental unit of F .
OF = Z[ωD ] the ring of integers of F .
UF = {±1} × εZD the group of units.

For integer k 6= 0, we have the Hecke Grössencharacter Ξk of F defined by

Ξk((α)) :=
∣∣∣α
α̃

∣∣∣ πik
log εD for ideal (α) ⊂ OF with generator α,

where α̃ is the conjugate of α under the nontrivial automorphism of F .
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Dihedral Maass forms

Let B∗0 (D, χD) denote the set of L2-normalized newforms of weight 0 for Γ0(D),
with nebentypus character χD (the Kronecker symbol). Maass showed that the
theta-like series associated to Ξk by

φk(z) := ρk(1) y1/2
∑
a⊂OF
a6={0}

Ξk(a)Kitk (2πN(a)y)
(
e(N(a)x) + e(−N(a)x)

)
∈ B∗0 (D, χD),

where z = x + iy ∈ H, tk := tφk
= πk/ log εD and φk has Laplace eigenvalue

1/4 + t2
k . Here N(a) = #OF/a is the norm of a nonzero ideal a ⊂ OF , Ks(z) is

the modified Bessel function, and ρk(1) is the positive real number such that φk is
L2-normalized, i.e.,

‖φk‖2
2 =

∫
Γ0(D)\H

|φk(z)|2 dxdy
y2

= 1.

Weyl’s law: Let tk := πk
log εD

, then

#{φk : 0 < tk ≤ T} ∼ log εD
π

T .
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Quantum variance for dihedral Maass forms

Define
µk(ψ) := 〈ψ, |φk |2〉.

Define the quantum covariance for dihedral Maass forms by

Q(ψ1, ψ2;K ; Φ) :=
∑
k∈Z

µk(ψ1)µk(ψ2)Φ

(
k

K

)

for ψ1, ψ2 ∈ L2
cusp(X).

Define the harmonic weighted quantum covariance by

Qh(ψ1, ψ2;K ; Φ) :=
∑
k∈Z

L(1, φ2k)2µk(ψ1)µk(ψ2)Φ

(
k

K

)
,

where L(s, φ2k) is the L-function of φ2k .
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Quantum variance for dihedral Maass forms

Theorem (H.–Lester 2020)

Let ψ be an even Hecke–Maass cuspidal newform on Γ0(D). Then as K →∞ we
have that

Qh(ψ,ψ;K ; Φ) = Φ̃(0)Ah(ψ) L( 1
2 , ψ)L( 1

2 , ψ × χD)Vcl(ψ) + o(1),

where

Ah(ψ) =
π log εD

2D2ζD(2)L(1, χD)

(
1 +

λψ(p1)
√
p1

+
λψ(p2)
√
p2

+
λψ(D)√

D

)
.

Assume the Generalized Ramanujan Conjecture (GRC). Then as K →∞ we have
that

Q(ψ,ψ;K ; Φ) = Φ̃(0)A(ψ) L( 1
2 , ψ)L( 1

2 , ψ × χD)V (ψ) + o(1),

where A(ψ) = Ah(ψ)C ′D,ψ, with an explicit C ′D,ψ.

Application: If Ah(ψ) L( 1
2 , ψ)L( 1

2 , ψ × χD) 6= 0, then µk(ψ) = Ω(k−1/2−ε).

Conjecture: µk(ψ) = O(k−1/2+ε). GRH implies this conjecture.
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Quantum covariance for dihedral Maass forms

Theorem (H.–Lester 2020)

Assume Generalized Riemann Hypothesis (GRH). Let ψ1, ψ2 be two orthogonal
even Hecke–Maass cuspidal newforms. Then we have as K →∞ that

Q(ψ1, ψ2;K ; Φ) −→ 0.

In particular, the quadratic form Q = limK→∞Q(·, ·;K ; Φ) is diagonalized by the
orthonormal basis of Hecke–Maass cuspidal newforms on B∗0 (D).

Using the method of Rudnick–Soundararajan for lower bounds for moments of
L-functions one can show the moments of µk(ψ) blow up.
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Rankin–Selberg and Watson–Ichino

Let φ, uj be Hecke–Maass forms of level 1, φk be a dihedral Maass form of level
D, and ψ a Hecke–Maass newform of level D with trivial nebentypus.

Rankin–Selberg method:

|µt(φ)|2 =
|Λ(1/2 + 2it, φ)|2Λ(1/2, φ)2

2|ξ(1 + 2it)|4Λ(1, sym2 φ)
,

where Λ means the corresponding completed L-functions and
ξ(s) = π−s/2Γ(s/2)ζ(s).

Watson–Ichino formula:

|µj(φ)|2 =
Λ(1/2, sym2 uj × φ)Λ(1/2, φ)

8Λ(1, sym2 uj)2Λ(1, sym2 φ)
,

|µk(ψ)|2 =
1

8
√
D

Λ( 1
2 , ψ)Λ( 1

2 , ψ × χD)Λ( 1
2 , ψ × φ2k)

Λ(1, sym2 ψ)Λ(1, χD)2Λ(1, φ2k)2
.
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Proof ingredients: Moments of L-functions

Proposition (H.–Lester 2020)

Let ψ be an even Hecke–Maass cuspidal newform on Γ0(D) with trivial
nebentypus and ηψ(D) denote the WD -eigenvalue of ψ, where WD is the
Atkin-Lehner operator. Suppose ηψ(D) = 1. Let w be a Schwartz function with
compact support in [ 1

2 , 2] such that w (j)(x)� P j , where P ≥ 1 is a large
parameter. Then there exists A0 > 0 such that∑

k∈Z
L( 1

2 , ψ × φ2k)w

(
k

K

)
= w̃(1) · CD,ψ · K + O(PA0 · K 1

2 +ϑ+ε),

where the implied constant depends at most on ψ,D. Here ϑ is the bound toward
the Ramanujan–Selberg conjecture and

CD,ψ = 2 · L(1, χD)

ζD(2)
L(1, sym2 ψ)

(
1 +

λψ(p1)
√
p1

+
λψ(p2)
√
p2

+
λψ(D)√

D

)
where ζD(s) = ζ(s)

∏
p|D(1− p−s). Recall that w̃(s) :=

∫∞
0

w(x)x s−1 dx is the
Mellin transform of w .
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Proof ingredients: Twisted moments of L-functions

Proposition (H.–Lester 2020)

Assume GRC. Suppose ηψ(D) = 1. Then there exists A0 > 0 such that for n ∈ N

∑
k∈Z

L( 1
2 , ψ×φ2k)·λ2k(n)w

(
k

K

)
= w̃(1)·CD,ψ·h

(
n

(n,D)

)
·K+O((Pn)A0 ·K 1

2 +ϑ+ε),

for certain multiplicative function h.

Proposition (H.–Lester 2020)

Assume GRC. Suppose ηψ(D) = 1. Also, suppose P ≤ K δ for some δ > 0
sufficiently small. Then for any A ≥ 1 we have that

∑
k∈Z

L( 1
2 , ψ × φ2k)

L(1, φ2k)2
w

(
k

K

)
= w̃(1) · C ′D,ψ · CD,ψ · K + O

(
K

(logK )A

)
where C ′D,ψ is an explicit constant depending on D and ψ.
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Proof ingredients: Conditional upper bounds

Theorem (Soundararajan 2009)

Let Mk(T ) :=
∫ T

0
|ζ(1/2 + it)|2kdt. Assume RH. Then we have

T (logT )k
2

�k Mk(T )�k,ε T (logT )k
2+ε.

Proposition (H.–Lester 2020)

Assume GRH. Let n ≥ 1. Also, let ψ1, . . . , ψn be pairwise orthogonal
Hecke–Maass cuspidal newforms on Γ0(D) with trivial nebentypus. Then for any
real numbers `1, · · · , `n > 0 we have that∑
K<k≤2K

L( 1
2 , ψ1 × φ2k)`1 · · · L( 1

2 , ψn × φ2k)`n � K · (logK )
`1(`1−1)

2 +···+ `n(`n−1)
2 +ε.

n = 2, `1 = `2 = 1/2 ⇒ Quantum covariance for dMF vanishes.
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Thank you for your attention!


