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Methods

Artin-Schreier curves

Throughout this talk p > 2 is a prime power, q = pν a power of p.

An Artin-Schreier curve is a curve defined by an affine equation

yp − y = f (x)

over a field F of characteristic p, where f ∈ F (x) is a rational function not of
the form f = hp − h, h ∈ F (x).

Denote by Cf the smooth projective model of the curve defined by
yp − y = f (x).
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Methods

Artin-Schreier L-functions

Now consider f ∈ Fq(x), f 6= hp − h (h ∈ Fq(x)). The zeta-function of Cf

factors as follows:

ζ(u,Cf ) := exp

(
∞∑
r=1

#Cf (Fqr )

r
ur

)
= (1− u)−1(1− qu)−1

∏
ψ

L(u, f , ψ),

where ψ runs over the p − 1 nontrivial additive characters of Fp and

L(u, f , ψ) = exp

 ∞∑
r=1

∑
α∈Fqr ∪{∞}

f (α)6=∞

ψ
(
trFq/Fp f (α)

) ur

r


is called the Artin-Schreier L-function associated with f , ψ.
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Methods

Artin-Schreier L-functions: basic properties

L(u, f , ψ) is a polynomial of degree 2g(Cf )
p−1

(g denotes the genus).

Riemann Hypothesis (proved by Weil):

L(u, f , ψ) =

2g(Cf )/(p−1)∏
j=1

(
1− q1/2e(θj(f ))u

)
, θj(f ) ∈ R, 1 ≤ j ≤ 2g(Cf )

p − 1

[e(t) = exp(2πt)].
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Methods

Three families of Artin-Schreier L-functions

Fix a nontrivial additive character ψ : F+
p → C×.

We consider the following three natural families {L(u, f , ψ)}f∈Fd of A-S
L-functions depending on a parameter d .

1. The polynomial A-S family (assume (d , p) = 1):

AS0
d = {f ∈ Fq[x ] : deg f = d}

g(Cf ) = (p − 1)(d − 1)/2, deg L(u, f , ψ) = d − 1.

2. The odd polynomial A-S family (assume (d , 2p) = 1):

AS0,odd
d = {f ∈ Fq[x ] : deg f = d , f (x) = −f (−x)} ⊂ AS0

d .
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Methods

Three families of Artin-Schreier L-functions (cont’d)

3. The ordinary A-S family:

ASord
d =

{
f =

h

g
: h, g ∈ Fq[x ], (g , h) = 1, g squarefree,

deg f := max(deg h, deg g) = d , deg g ∈ {d , d − 1}
}
.

g(Cf ) = (p − 1)(d − 1), deg L(u, f , ψ) = 2(d − 1).
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Methods

Random matrix models

AS0
d  U(d − 1)

AS0,odd
d  USp(d − 1)

ASord
d  U(2d − 2)

These are models in the following sense: if we choose f ∈ Fd uniformly in one

of the above families and write L(u, f , ψ) =
∏N

j=1

(
1− q1/2e(θj(f ))u

)
and

similarly for a random A ∈ G (G the corresponding compact classical group) let
e(θj(A)) be its eigenvalues. Then the collections θ1(f ), . . . , θN(f ) ∈ R/Z
should behave statistically like the collections θ1(A), . . . , θN(A).

Theorem (Katz)

Fix d . Let Fd be one of the above families and G the corresponding matrix
group. Let φ : (R/Z)N → C (N = deg L(u, f , ψ) for any f ∈ Fd) be a
symmetric continuous function. Then

lim
q→∞
〈φ(θ1(f ), . . . θN(f ))〉Fd = 〈φ(θ1(A), . . . , θN(A))〉G

(average w.r.t. Haar measure).

We will be interested in the q fixed, d →∞ regime!
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Methods

Local statistics: n-level density

n-level density captures the local statistics of low-lying zeros at the scale of the
average spacing between zeros, i.e. (p − 1)/2g = deg L(u, f , ψ)−1 (g = g(Cf )).

Let φ(t) ∈ S(Rn) be a fixed (Schwartz) test function,

φ2g/(p−1)(t) =
∑
i∈Zn

φ

(
2g

p − 1
(t + i)

)
∈ C∞((R/Z)n)

the associated periodic test function at scale (p − 1)/2g.

The n-level density is defined by

Wn(f ;φ) =
∑

1≤i1,...,in≤
2g
p−1

distinct

φ2g/(p−1) (θi1(f ), . . . , θin (f )) .
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Methods

Local statistics: n-level density, the random matrix case

For a unitary matrix A define Wn(A;φ) similarly.

Theorem (Katz-Sarnak)

1

lim
N→∞

〈Wn(A;φ)〉U(N) =

∫
Rn

φ(t)RU
n (t)dt,

where

RU
n (t1, . . . , tn) = det

(
sinπ(ti − tj)

π(ti − tj)

)
1≤i,j≤n

.

2

lim
N→∞

〈Wn(A;φ)〉USp(2N) =

∫
Rn

φ(t)RUSp
n (t)dt,

where

RUSp
n (t1, . . . , tn) = det

(
sinπ(ti − tj)

π(ti − tj)
− sinπ(ti + tj)

π(ti + tj)

)
1≤i,j≤n

.
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Methods

Local statistics: n-level density, the random matrix case
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Methods

Local statistics: n-level density, main conjectures for A-S L-functions

Conjecture

1

lim
d→∞

〈Wn(f ;φ)〉f∈AS0
d

=

∫
Rn

φ(t)RU
n (t)dt.

2

lim
d→∞

〈Wn(f ;φ)〉
f∈AS0,odd

d
=

∫
Rn

φ(t)RUSp
n (t)dt.

3

lim
d→∞

〈Wn(f ;φ)〉f∈ASord
d

=

∫
Rn

φ(t)RU
n (t)dt.
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Methods

Previous work

Theorem (E. ’12)

Assume supp φ̂ ⊂ (−2(1− 1/p), 2(1− 1/p)). Then

lim
d→∞

〈W1(f ;φ)〉AS0
d

=

∫ ∞
−∞

φ(t)dt = 〈W1(A;φ)〉Ud−1 .

Theorem (E. ’12)

Assume supp φ̂ ⊂ {|τ |+ |σ| < 1− 1/p}. Then

lim
d→∞

〈W2(f ;φ)〉AS0
d

=

∫∫
R2

φ(t, s)

(
1−

(
sinπ(t − s)

π(t − s)

)2
)
dtds =

= lim
d→∞

〈W2(A;φ)〉U(d−1).

Bucur, David, Feigon, Laĺın and Sinha studied mesoscopic statistics of zeros
(i.e. at the scale ω(d) p−1

2g
where ω(d)→∞) for several families of A-S

L-functions including ASord
d , obtaining central limit theorems for the number of

zeros in mesoscopic intervals.
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Methods

New results

Theorem (E., Pirani ’21; improved result for 2-level density of polynomial A-S
family)

Assume supp φ̂ ⊂ {|τ |+ |σ| < 2(1− 1/p)}. Then

lim
d→∞

〈W2(f ;φ)〉AS0
d

=

∫∫
R2

φ(t, s)

(
1−

(
sinπ(t − s)

π(t − s)

)2
)
dtds =

= lim
d→∞

〈W2(A;φ)〉U(d−1).

Theorem (E., Pirani ’21; first zero-density result for odd polynomial A-S family)

Assume supp φ̂ ⊂ (−(1− 1/p), (1− 1/p)). Then

lim
d→∞

〈W1(f ;φ)〉AS0,odd
d

=

∫ ∞
−∞

φ(t)

(
1− sin 2πt

2πt

)
dt =

= lim
d→∞

〈W1(A;φ)〉USp(d−1).
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Methods

New results (cont’d)

Theorem (E., Pirani ’21; first zero-density result for ordinary A-S family)

Assume supp φ̂ ⊂ (−1, 1). Then

lim
d→∞

〈W1(f ;φ)〉ASord
d

=

∫ ∞
−∞

φ(t)dt = 〈W1(A;φ)〉U(2d−2).
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Methods

Methods

For concreteness we consider the family ASord
d . The other families are treated

by similar methods, although the details differ substantially.

The family ASord
d can be (essentially) subdivided into the subfamilies

Hg = {f = h/g : h ∈ Fq[x ], deg h < d}, g ∈ Fq[x ] squarefree, deg g = d .

We compute 〈W1(f ;φ)〉Hg for each g separately.

Step I: Reformulate in terms of Dirichlet characters.

{L(u, f , ψ) : f ∈ Hg} = {(1−u)−1L(u, χ) : χ primitive char. mod g 2, χp = 1}.
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Methods

Methods (cont’d)

Step II: apply Fourier series to φ2g/(p−1) + the condition supp φ̂ ⊂ (−1, 1) +
explicit formula + orthogonality relation for characters, to express
〈W1(f ;φ)〉Hg as a sum over primes.

W1(f ;φ) =
1

2d − 2

∑
−(1−δ)(2d−2)≤r≤(1−δ)(2d−2)

φ̂

(
r

2d − 2

) 2d−2∑
j=1

e(rθj(f )) =

=
1

2d − 2

(1−δ)(2d−2)∑
r=0

−2q−r/2 −

−q−r/2
∑
deg c=r
monic

(
φ̂

(
r

2d − 2

)
χf (c) + φ̂

(
−r

2d − 2

)
χf (c)

)
Λ(c)


(here δ > 0 is such that supp φ̂ ⊂ [−1 + δ, 1− δ]).

Take the average 〈·〉Hg , which is the same as averaging over all primitive
χ mod g 2, χp = 1 and use the orthogonality relation:
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Methods

Methods (cont’d)

〈W1(f ;φ)〉Hg = φ̂(0)+

+

(1−δ)(2d−2)∑
r=1

q−r/2
∑
deg c=r
monic

c mod g2∈(Fq [x]/g2)×p

(
φ̂

(
r

2d − 2

)
+ φ̂

(
− r

2d − 2

))
Λ(c)+

+ contribution of imprimitive characters + small error.

φ̂(0) =
∫
R φ(t)dt is the desired main term. Ignoring the contribution of

imprimitive characters (which can be dealt with similarly) it remains to show
that

q−r/2rd#
{
c ∈ Fq[x ] prime, deg c = r : c ≡ up (mod g 2) for some u

}
= o(1)

whenever (crucially!) r ≤ (1− δ)(2d − 2) (recall d = deg g).
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Methods (cont’d)

Step III: We need to bound the number of prime c ∈ Fq[x ], deg c = r of the
form c ≡ up (mod g 2).

Key observation: if
c = up + Ug 2,

taking derivatives
c ′ = U ′g 2 + 2Ugg ′

ans so g |c ′. So it is enough to bound

#
{
c ∈ Fq[x ], deg c = r : g |c ′

}
.
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Step IV:

Another key observation:

Λg = {c ∈ Fq[x ] : g |c ′} ⊂ Fq[x ]

is a free Fq[xp]-submodule of Fq[x ] of rank p − 1, i.e. an Fq[xp]-lattice of rank
p − 1.

It turns out that vol(Λg ) = qdeg g = qd and we need to count the number of
vectors in this lattice of (q-logarithmic) sup-norm ≈ r/p.

The number of vectors in this ball can be bounded by utilizing Lenstra’s theory
of reduced bases for Fq[x ]-lattices. This concludes the proof for the ordinary
family.

Remark: our results for the polynomial and odd polynomial families also
crucially use the theory of reduced bases for Fq[x ]-lattices!
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Suggested open problems: zero density and moments

[green = easy, blue = challenging, red = hard, black = ]

Mk =
〈
L(q−1/2, f , ψ)k

〉
(or
〈
|L(q−1/2, f , ψ)|k

〉
if k is even).

ASord: compute 1-level density for supp φ̂ ⊂ (−1− δ, 1 + δ), δ > 0 or
(−2− δ, 2 + δ), δ > 0.
Compute M1,M2,M3,M4,M5,M6.

AS0: compute 1-level density for supp φ̂ ⊂ (−(2− 2/p)− δ, 2− 2/p + δ).
Compute M1,M2,M3,M4.

AS0,odd: compute 1-level density for supp φ̂ ⊂ (−(1− 1/p)− δ, 1− 1/p + δ).
Compute M1,M2.
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Thank you!
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