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Artin-Schreier curves

Throughout this talk p > 2 is a prime power, g = p” a power of p.
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Artin-Schreier curves

Throughout this talk p > 2 is a prime power, g = p” a power of p.
An Artin-Schreier curve is a curve defined by an affine equation

¥ —y=1f(x)

over a field F of characteristic p, where f € F(x) is a rational function not of
the form f = h? — h, h € F(x).
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Artin-Schreier curves

Throughout this talk p > 2 is a prime power, g = p” a power of p.

An Artin-Schreier curve is a curve defined by an affine equation
¥ —y=1f(x)

over a field F of characteristic p, where f € F(x) is a rational function not of
the form f = h? — h, h € F(x).

Denote by Cr the smooth projective model of the curve defined by
yP —y=f(x).
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Artin-Schreier L-functions
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Artin-Schreier L-functions

Now consider f € Fy(x), f # h” — h(h € Fq(x)). The zeta-function of Cr
factors as follows:

C(u, C) = exp (Z #Cf(]Fq >
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Artin-Schreier L-functions

Now consider f € Fy(x), f # h” — h(h € Fq(x)). The zeta-function of Cr
factors as follows:

C(u, Cr) :=exp (Z #Cf(]F" > =@ -1 qu) " [T L fow),
¥
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Artin-Schreier L-functions

Now consider f € Fy(x), f # h” — h(h € Fq(x)). The zeta-function of Cr
factors as follows:

C(u, Cr) :=exp (Z #Cf(]F" > =@ -1 qu) " [T L fow),
¥

where 1 runs over the p — 1 nontrivial additive characters of F, and
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Artin-Schreier L-functions

Now consider f € Fy(x), f # h” — h(h € Fq(x)). The zeta-function of Cr
factors as follows:

C(u, Cr) :=exp (Z #Cf(]F" > =@ -1 qu) " [T L fow),
¥

where 1 runs over the p — 1 nontrivial additive characters of F, and

L(u, f ) = exp Z Z Y (tre,/m, f()) UT

r=1 a€FyrU{oo}
f(a)#oo
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Artin-Schreier L-functions

Now consider f € Fy(x), f # h” — h(h € Fq(x)). The zeta-function of Cr
factors as follows:

C(u, Cr) :=exp (Z #Cf(]F" > =@ -1 qu) " [T L fow),
¥

where 1 runs over the p — 1 nontrivial additive characters of F, and

L(u, f ) = exp Z Z Y (tre,/m, f()) UT

r=1 a€FyrU{oo}
f(a)#oo

is called the Artin-Schreier L-function associated with f, .
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Artin-Schreier L-functions: basic properties

29(Cr)

o L(u,f,v) is a polynomial of degree =1 (g denotes the genus).
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Artin-Schreier L-functions: basic properties

29(Cr)

o L(u,f,v) is a polynomial of degree =1 (g denotes the genus).

@ Riemann Hypothesis (proved by Weil):
2g(¢r)/(p=1)
o f)= ] (1-ae@m)s), o er1<)< 2D

=1 p-1

[e(t) = exp(2rt)].

Alexei Entin Local statistics for zeros of Artin-Schreier L-functions



Three families of Artin-Schreier L-functions

Fix a nontrivial additive character 1 : Fj — C*.

Alexei Entin Local statistics for zeros of Artin-Schreier L-functions



Three families of Artin-Schreier L-functions

Fix a nontrivial additive character 1 : Fj — C*.

We consider the following three natural families {L(u, f,%)}rer, of A-S
L-functions depending on a parameter d.
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Three families of Artin-Schreier L-functions

Fix a nontrivial additive character 1 : Fj — C*.

We consider the following three natural families {L(u, f,%)}rer, of A-S
L-functions depending on a parameter d.

1. The polynomial A-S family (assume (d, p) = 1):
ASY = {f € Fy[x] : deg f = d}
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Three families of Artin-Schreier L-functions

Fix a nontrivial additive character 1 : Fj — C*.

We consider the following three natural families {L(u, f,%)}rer, of A-S
L-functions depending on a parameter d.

1. The polynomial A-S family (assume (d, p) = 1):
ASY = {f € Fy[x] : deg f = d}

0(Cr)=(p—1)(d —1)/2, degl(u.f,¥)=d 1.
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Three families of Artin-Schreier L-functions

Fix a nontrivial additive character 1 : Fj — C*.

We consider the following three natural families {L(u, f,%)}rer, of A-S
L-functions depending on a parameter d.

1. The polynomial A-S family (assume (d, p) = 1):
ASY = {f € Fy[x] : deg f = d}

0(Cr)=(p—1)(d —1)/2, degl(u.f,¥)=d 1.

2. The odd polynomial A-S family (assume (d,2p) = 1):
ASY°M = {f € Fy[x] : deg f = d, f(x) = —f(—x)} C ASY.

Alexei Entin Local statistics for zeros of Artin-Schreier L-functions



Three families of Artin-Schreier L-functions (cont'd)
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Three families of Artin-Schreier L-functions (cont'd)

3. The ordinary A-S family:
ord h
ASG  =<f = z th,g € Fqlx], (g, h) = 1, g squarefree,

deg f := max(deg h,degg) = d,degg € {d,d — 1}} .
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Three families of Artin-Schreier L-functions (cont'd)

3. The ordinary A-S family:
ord h
ASG  =<f = z th,g € Fqlx], (g, h) = 1, g squarefree,

deg f := max(deg h,degg) = d,degg € {d,d — 1}} .

9(Cr) =(p—1)(d = 1), degl(u,f,¢)=2(d—1).
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Random matrix models
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Random matrix models

ASY ~ U(d—1)
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Random matrix models

ASY ~ U(d—1)
0,odd
AS ~ USp(d —1)
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Random matrix models

ASY ~ U(d-1)
AS%eM s USp(d —1)
ASTY s U(2d -2)
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Random matrix models

ASY ~ U(d-1)
AS%eM s USp(d —1)
ASTY ~ U(2d —2)
These are models in the following sense: if we choose f € F4 uniformly in one
of the above families and write L(u, f,) = Hszl (1 q'/%e(0 (f))u) and
similarly for a random A € G (G the corresponding compact classical group) let
e(0;(A)) be its eigenvalues. Then the collections 0:(f),...,0n(f) € R/Z
should behave statistically like the collections 61(A), ..., On(A).
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Random matrix models

ASY ~ U(d—1)
AS%eM s USp(d —1)
ASTY s U(2d -2)
These are models in the following sense: if we choose f € F4 uniformly in one
of the above families and write L(u, f,) = Hszl (1 q'/%e(0 (f))u) and
similarly for a random A € G (G the corresponding compact classical group) let
e(0;(A)) be its eigenvalues. Then the collections 0:(f),...,0n(f) € R/Z
should behave statistically like the collections 61(A), ..., On(A).
Theorem (Katz)
Fix d. Let F4 be one of the above families and G the corresponding matrix
group. Let ¢ : (R/Z)" — C (N = deg L(u, f,1)) for any f € Fy) be a
symmetric continuous function. Then

Jim ($(01(F), ... On(F))) 74 = ($(61(A), ., On(A)))g

(average w.r.t. Haar measure).

We will be interested in the g fixed, d — oo regime!

Alexei Entin 7/ Local statistics for zeros of Artin-Schreier L-functions



Local statistics: n-level density

n-level density captures the local statistics of low-lying zeros at the scale of the
average spacing between zeros, i.e. (p — 1)/2g = deg L(u, f, )" (g = g(Cr)).
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Local statistics: n-level density

n-level density captures the local statistics of low-lying zeros at the scale of the
average spacing between zeros, i.e. (p — 1)/2g = deg L(u, f, )" (g = g(Cr)).

Let ¢(t) € S(R") be a fixed (Schwartz) test function,
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Local statistics: n-level density

n-level density captures the local statistics of low-lying zeros at the scale of the
average spacing between zeros, i.e. (p — 1)/2g = deg L(u, f, )" (g = g(Cr)).

Let ¢(t) € S(R") be a fixed (Schwartz) test function,

brio-(®) = 30 (21 +0) € o= (®/2))

iezn

the associated periodic test function at scale (p — 1)/2g.
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Local statistics: n-level density

n-level density captures the local statistics of low-lying zeros at the scale of the
average spacing between zeros, i.e. (p — 1)/2g = deg L(u, f, )" (g = g(Cr)).

Let ¢(t) € S(R") be a fixed (Schwartz) test function,

brio-(®) = 30 (21 +0) € o= (®/2))

iezn

the associated periodic test function at scale (p — 1)/2g.

The n-level density is defined by

Wn(f;¢) = Z ¢29/(p71) (eil(f)7"'70"n(f))'
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Local statistics: n-level density, the random matrix case

For a unitary matrix A define W, (A; ¢) similarly.
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Local statistics: n-level density, the random matrix case

For a unitary matrix A define W, (A; ¢) similarly.

Theorem (Katz-Sarnak)

o
Jim (Wa(A: 0)) / S(t)RV(t)dt

where

RY(t1,...,ty) = det (m) .
m(ti—4) /i<ij<n
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Local statistics: n-level density, the random matrix case

For a unitary matrix A define W, (A; ¢) similarly.

Theorem (Katz-Sarnak)

o
Jim (Wa(A: 0)) / S(t)RV(t)dt
where i )
RY(t,..., t, :det<m) :
(& ) m(ti—t) Jicij<n
(2]
Jim (Wa(A; 6))usp(am) =/ B(t)Ry°P(t)dt,
— 00 RN
where
RYSP(t1,..., tn :det<5‘"”(fi—tj)_Sinﬂ(ff“f)) .
(t ) (i — t;) m(ti+t) Jicij<n
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Local statistics: n-level density, main conjectures for A-S L-functions

o

lim (Wa(F;6)) reasg = / S(6)RY (t)dt.
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Local statistics: n-level density, main conjectures for A-S L-functions

o

lim (Wa(F;6)) reasg = / S(6)RY (t)dt.

(2]
Jm (Wa(fi0)c gggons = [ SORIT ()

d— o0
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Local statistics: n-level density, main conjectures for A-S L-functions

° Jm (Walfi8))reasy = [ SR (0t
(2]

Jm (Wa(fi0)c gggons = [ SORIT ()
(3 )

Jm (Walfi8))rcasys = [ o(ORY(®)de
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Previous work

Theorem (E. '12)

Assume supp  C (—=2(1 — 1/p),2(1 — 1/p)). Then

Jim (WA(F36))asy = [ o)t = (WA(A 6.
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Previous work

Theorem (E. '12)

Assume supp  C (—=2(1 — 1/p),2(1 — 1/p)). Then

d—o0

i (VA(F56))asg = [ oe)de = (WACA 6o,

Theorem (E. '12)

Assume supp ¢ C {|7| + |o| <1 —1/p}. Then

Jim (Wa(f; 9)) asg =/ B(t,s) < (S':rzrt(t ))>2> dtds =

= dlLrT;o<W2(A; ?)) u(d—1)

A\
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Previous work

Theorem (E. '12)

Assume supp  C (—=2(1 — 1/p),2(1 — 1/p)). Then

i (VA(F56))asg = [ oe)de = (WACA 6o,

d—o0

Theorem (E. '12)

Assume supp ¢ C {|7| + |o| <1 —1/p}. Then

Jim (Wa(fi sy = [[ o(t.9 <1 - (in‘ﬁ)) deds

(Wa(A; 9))ua—1)-

lim
d— o0

A\

Bucur, David, Feigon, Lalin and Sinha studied mesoscopic statistics of zeros
(i.e. at the scale w(d)"z;g1 where w(d) — oo) for several families of A-S
L-functions including ASS™, obtaining central limit theorems for the number of

zeros in mesoscopic intervals.
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New results
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New results

Theorem (E., Pirani '21; improved result for 2-level density of polynomial A-S

family)
Assume supp ¢ C {|7| + |o] < 2(1 —1/p)}. Then

I|m <W2(f ?)) AS? :/ o(t,s) <1 — (ﬂ;zrt(t_s)s))2> dtds =

= dIer;o( Wa(A; @) ud—1
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New results

Theorem (E., Pirani '21; improved result for 2-level density of polynomial A-S

family)
Assume supp ¢ C {|7| + |o] < 2(1 —1/p)}. Then

Jim (W (£ 0))asg = [ [ o(t.) <1 - (ﬂg;“_ﬂ)) dtds =

Theorem (E., Pirani '21; first zero-density result for odd polynomial A-S family)

Assume supp ¢ C (—(1 —1/p), (1 —1/p)). Then

Jim (WA(f;9)) yg0.0a0 = /OO o(t) (1 - Si;i?) dt =

(Wi (A; #))usp(d—1)-

lim
d—oo
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New results (cont'd)

Theorem (E., Pirani '21; first zero-density result for ordinary A-S family)

Assume supp ¢ C (—1,1). Then

lim
d— o0

<W1(f;¢)>Asgrd = /:’" o(t)dt = (WA(A; 8))u(ed—2)-
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Methods

Methods
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Methods
Methods

For concreteness we consider the family ASS™®. The other families are treated
by similar methods, although the details differ substantially.
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Methods
Methods

For concreteness we consider the family ASS™®. The other families are treated
by similar methods, although the details differ substantially.

The family ASS™ can be (essentially) subdivided into the subfamilies

He ={f =h/g: heF4x],degh < d}, g € Fq[x] squarefree,degg = d.
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Methods
Methods

For concreteness we consider the family ASS™®. The other families are treated
by similar methods, although the details differ substantially.

The family ASS™ can be (essentially) subdivided into the subfamilies
He ={f =h/g: heF4x],degh < d}, g € Fq[x] squarefree,degg = d.

We compute (WA(f; ¢))3, for each g separately.
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Methods
Methods

For concreteness we consider the family ASS™®. The other families are treated
by similar methods, although the details differ substantially.

The family ASS™ can be (essentially) subdivided into the subfamilies
He ={f =h/g: heF4x],degh < d}, g € Fq[x] squarefree,degg = d.
We compute (WA(f; ¢))3, for each g separately.

Step |: Reformulate in terms of Dirichlet characters.
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Methods
Methods

For concreteness we consider the family ASS™®. The other families are treated
by similar methods, although the details differ substantially.

The family ASS™ can be (essentially) subdivided into the subfamilies

He ={f =h/g: heF4x],degh < d}, g € Fq[x] squarefree,degg = d.
We compute (WA(f; ¢))3, for each g separately.
Step |: Reformulate in terms of Dirichlet characters.

{L(u, ) FeHgy ={(1—u) " L(u,x) : x primitive char. mod g°, x* = 1}.
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Methods

Methods (cont'd)
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Methods

Methods (cont'd)
Step Il: apply Fourier series to ¢s4/(,—1) + the condition supp¢ C (=1,1) +
explicit formula + orthogonality relation for characters, to express

(WA(f; ¢))#, as a sum over primes.
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Methods

Methods (cont'd)

Step Il: apply Fourier series to ¢s4/(,—1) + the condition supp¢ C (=1,1) +
explicit formula + orthogonality relation for characters, to express
(WA(f; ¢))#, as a sum over primes.

2d—2

WA(f; ¢) = ﬁ Z ¢ <ﬁ) Z e(ro;(f)) =

—(1-5)(2d—2)<r<(1—68)(2d—2) j=1

—r/2 _

(1—8)(2d—2)
—2q
=0

1
T 2d-2 E

e )

monic

(here § > 0 is such that supp ¢ C [~1 46,1 — 4]).

Take the average (-)#,, which is the same as averaging over all primitive
x mod g2, x* = 1 and use the orthogonality relation:
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Methods (cont'd)

Step Il: apply Fourier series to ¢s4/(,—1) + the condition supp¢ C (=1,1) +
explicit formula + orthogonality relation for characters, to express
(WA(f; ¢))#, as a sum over primes.

2d—2

WA(f; ¢) = ﬁ Z ¢ <ﬁ) Z e(ro;(f)) =

—(1-5)(2d—2)<r<(1—68)(2d—2) j=1

—r/2 _

(1—8)(2d—2)
—2q
=0

1
T 2d-2 E

e )

monic

(here § > 0 is such that supp ¢ C [~1 46,1 — 4]).
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Methods

Methods (cont'd)

Step Il: apply Fourier series to ¢s4/(,—1) + the condition supp¢ C (=1,1) +
explicit formula + orthogonality relation for characters, to express
(WA(f; ¢))#, as a sum over primes.

2d—2

1 A r
WA(F; ¢) = —— 5T 5 f
(Fi0) = 5o i) R -
—(1-68)(2d—2)<r<(1—68)(2d—2) j=1
; 9ed-2)
_ o /2 _
T 2d -2 ; 29

e )

monic

(here § > 0 is such that supp ¢ C [~1 46,1 — 4]).

Take the average (-)#,, which is the same as averaging over all primitive
x mod g2, x* = 1 and use the orthogonality relation:
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Methods

Methods (cont'd)
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Methods

Methods (cont'd)

(WA(F; §))2, = (0)+

(1—6)(2d—2)

+ Z g 3 (éb(Zd 2>+¢< g 2))/\(C)+

deg c=r
monic
c mod g2€(Fqlx]/g2) %P

+ contribution of imprimitive characters 4 small error.
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Methods

Methods (cont'd)

(WA(F; §))2, = (0)+

(1—6)(2d—2)

cnoet 2 (la) () e

deg c=r
monic
c mod g2€(Fqlx]/g2) X P

+ contribution of imprimitive characters 4 small error.

fR t)dt is the desired main term.
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Methods

Methods (cont'd)

(WA(F; )2, = H(0)+
(1—68)(2d—2)

—r/2 2 A
* ; 7 d; <¢(2d 2>+¢< 2d — 2)) (e)+
c mod g2 €(Fql)/8%)%P
+ contribution of imprimitive characters 4 small error.
fR t)dt is the desired main term. Ignoring the contribution of
|mpr|m|t|ve characters (which can be dealt with similarly) it remains to show
that

q Prd# {c € Fy[x] prime,degc =r: c=u® (mod g*) for some u} =o(1)

whenever (crucially!) r < (1 — §)(2d — 2) (recall d = deg g).
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Methods

Methods (cont'd)
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Methods

Methods (cont'd

Step Ill: We need to bound the number of prime ¢ € Fq[x], deg c = r of the
form ¢ = u” (mod g?).
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Methods

Methods (cont'd

Step Ill: We need to bound the number of prime ¢ € Fq[x], deg c = r of the
form ¢ = u” (mod g?).

Key observation: if
c=u"+ Ug’,
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Methods

Methods (cont'd)

Step Ill: We need to bound the number of prime ¢ € Fq[x], deg c = r of the
form ¢ = u” (mod g?).

Key observation: if
c=u"+ Ug’,

taking derivatives
o = U/g2 + 2Ugg/
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Methods

Methods (cont'd)

Step Ill: We need to bound the number of prime ¢ € Fq[x], deg c = r of the
form ¢ = u” (mod g?).

Key observation: if
c=u"+ Ug’,
taking derivatives
C/ _ U/g2 n 2Ugg/

ans so glc’.
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Methods

Methods (cont'd)

Step Ill: We need to bound the number of prime ¢ € Fq[x], deg c = r of the
form ¢ = u” (mod g?).

Key observation: if
c=u"+ Ug’,
taking derivatives
C/ _ U/g2 n 2Ugg/

ans so g|c’. So it is enough to bound

# {c €Fqlx],degc=r: g|c'}.
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Methods

Methods (cont'd)

Step Ill: We need to bound the number of prime ¢ € Fq[x], deg c = r of the
form ¢ = u” (mod g?).

Key observation: if
c=u"+ Ug’,
taking derivatives
C/ _ U/g2 n 2Ugg/

ans so g|c’. So it is enough to bound

# {c €Fqlx],degc=r: g|c'}.

Alexei Entin Local statistics for zeros of Artin-Schreier L-functions



Step IV:
Another key observation:
Ng = {c € Fq[x] : g|c"} C Fq[x]

is a free IFq[xP]-submodule of Fq[x] of rank p — 1, i.e. an F4[xP]-lattice of rank
p—1
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Step IV:

Another key observation:
Ng = {c € Fq[x] : g|c"} C Fq[x]

is a free IFq[xP]-submodule of Fq[x] of rank p — 1, i.e. an F4[xP]-lattice of rank
p—1

It turns out that vol(A;) = ¢%8€ = g¢ and we need to count the number of
vectors in this lattice of (g-logarithmic) sup-norm = r/p.
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Step IV:

Another key observation:

Ng = {c € Fq[x] : g|c"} C Fq[x]
is a free IFq[xP]-submodule of Fq[x] of rank p — 1, i.e. an F4[xP]-lattice of rank
p—1

It turns out that vol(A;) = ¢%8€ = g¢ and we need to count the number of
vectors in this lattice of (g-logarithmic) sup-norm = r/p.

The number of vectors in this ball can be bounded by utilizing Lenstra’s theory
of reduced bases for Fq[x]-lattices. This concludes the proof for the ordinary
family.
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Step IV:

Another key observation:
Ng = {c € Fq[x] : g|c"} C Fq[x]

is a free IFq[xP]-submodule of Fq[x] of rank p — 1, i.e. an F4[xP]-lattice of rank
p—1

It turns out that vol(A;) = ¢%8€ = g¢ and we need to count the number of
vectors in this lattice of (g-logarithmic) sup-norm = r/p.

The number of vectors in this ball can be bounded by utilizing Lenstra’s theory
of reduced bases for Fq[x]-lattices. This concludes the proof for the ordinary
family.

Remark: our results for the polynomial and odd polynomial families also
crucially use the theory of reduced bases for Fq[x]-lattices!
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Methods
Suggested open problems: zero density and moments

[green = easy, blue = challenging, red = hard, black = @]

Mi = (L(g Y2 £,0)%) (or (IL(a~Y/2, £,9)") if k is even).

AS°™: compute 1-level density for supp ¢ C (-1—=46,14+6),0 >0or
(-=2—-14,2414),6 > 0.

Compute My, Mo, M3, My, Ms, M.

AS®: compute 1-level density for supp ¢ C (—(2 —2/p) — 6,2 — 2/p + 6).
Compute My, Mo, M3, M.

AS%°%: compute 1-level density for supp ¢ C (—(1 —1/p) — 8,1 — 1/p + 6).
Compute My, M.
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Thank you!

Alexei Entin cal statistics for zeros of Artin-Schreier L-functions



	Methods

