A construction of Bowen-Margulis measure

Pouya Honaryar

University of Toronto

November 22, 2022

E

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Anosov flows: Definition

Fix M to be a C^1 Riemannian manifold and $\{g_t\}$ a differentiable flow on M. We say g_t is an *Anosov flow* if there is a splitting of tangent bundle TM,

$$T_x M = E_x^{\mathrm{s}} \oplus E_x^{\mathrm{u}} \oplus \mathbb{R} v_x, \quad \text{for} \quad x \in M$$

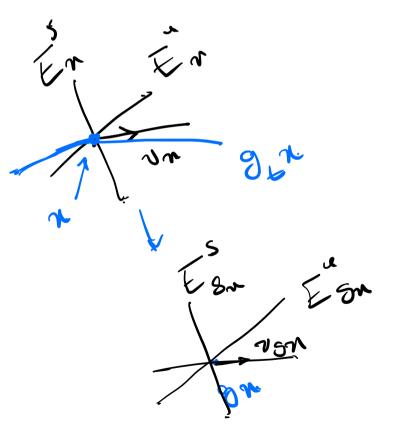
such that

1
$$v_x = \frac{dg_t x}{dt}|_{t=0}$$
 is the flow direction.

2 E^{s} and E^{u} are g_{t} -invariant.

and there is a constant $\kappa > 0$ such that

3
$$||D_x g_t(v)|| \le e^{-\kappa t} ||v||$$
 for $v \in E_x^s$ and $t \ge 0$.
4 $||D_x g_t(v)|| \ge e^{\kappa t} ||v||$ for $v \in E_x^u$ and $t \ge 0$.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

E

~ Q (?)

Anosov flows: Properties

- ① The distribution E^{u} is integrable, and the corresponding foliation is called the *unstable* foliation. The leaf that passes through $x \in M$ is denoted by W^{u}_{∞} .
- 2 The distribution $W^{u} \oplus \mathbb{R}v$ is integrable, and the corresponding foliation is called the *center-unstable* foliation. The leaf that passes through $x \in M$ is denoted by W_{x}^{0u} .
- 3 The distribution E^s is integrable, and the corresponding foliation is called the stable foliation. The leaf that passes through $x \in M$ is denoted by W_x^s
- The distribution $E^{s} \oplus \mathbb{R}v$ is integrable, and the corresponding foliation is called the *center-stable* foliation. The leaf that passes through $x \in M$ is denoted by W_{x}^{4} .
- **(**) The leaves of unstable foliation are C^1 , and they vary in a Holder-continuous way.

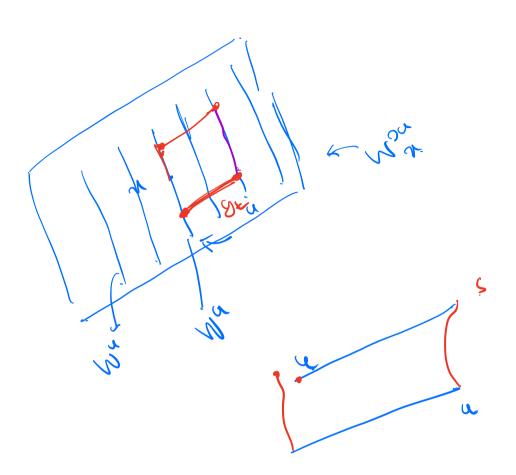
y NA (zwa=Ex zwa=

3

 $\checkmark a \land$

K

strongt ensta



$[{\mbox{\ \bullet}},{\mbox{\ \bullet}}]{\mbox{\ }}$, $\theta({\mbox{\ \bullet}},{\mbox{\ \bullet}}){\mbox{\ }}$, and flow box

Definition

The unstable metric d^{u} on W^{u} is defined by considering the restriction of Riemannian metric to unstable leaf W^{u} . This induces a topology on W^{u} that is different from the topology induced from M.

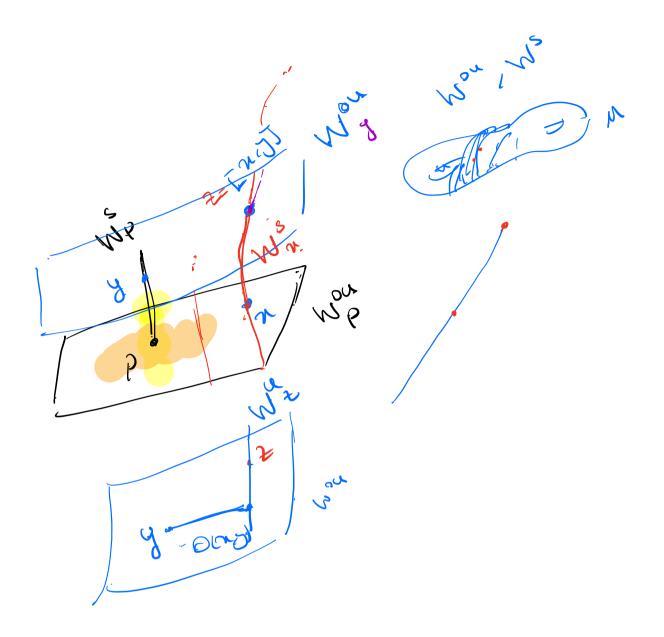
For $p \in M$ and $x \in W_x^{0u}, y \in W^s$ close to p,

- Set $z \coloneqq [x, y] \coloneqq W_x^{s, \text{ loc}} \cap W_y^{0u, \text{ loc}}$.
- 2 Set $\theta(x,y) \in \mathbb{R}$ such that $g_t(y) \in W_z^u$ for $t \coloneqq \theta(x,y)$.

Definition

A set of the form [U, V] for small neighborhoods $p \in U \subset W^{0u}$ and $p \in V \subset W^{s}$ is called a *flow box*.

SQ Q



Invariant measures

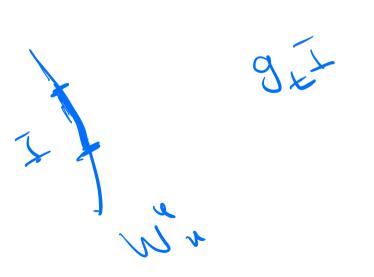
- **1** There exists a unique g_t -invariant measure in the Lebesgue class, called the *smooth invariant measure*.
- 2 Denoting the topological entropy of g_t by δ , there exists a unique g_t -invariant measure with entropy δ . This measure is called the Bowen-Margulis measure, and is denoted by μ_{BM} (or just μ).

E.

SQ (V

Two constructions of Bowen-Margulis measure

- Bowen's construction.
- $C_{7} := fr closed orbit, Q(r) \leq T_{7}$ Margulis' construction. 2



E

5900

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bowen-Margulis measure: Properties

There are a family of measures μ_x^{u} (resp. μ_x^{0u}, μ_x^{s}) supported on W_x^{u} (resp. W_x^{0u}, W_x^{s}) for $x \in M$ such that

- 1 $d\mu^{u}(g_{t}x) = e^{\delta t}\mu^{u}(x).$ 2 $d\mu^{0u}(y) = e^{\delta t}d\mu^{u}(x) dt$ for y = (x, t).
- 3 Locally, $d\mu_{\rm BM} = d\mu^{0\rm u} d\mu^{\rm s}$.
- In a flow box [U, V], $\mu_{BM}(z) = e^{-\delta\theta(x,y)} d\mu^{0u}(x) d\mu^{s}(y)$ for z = [x, y].

E

SQ Q

<ロト < 同ト < 三ト < 三ト

We present the paper "A new description of the Bowen-Margulis measure" by Ursula Hamenstädt . The paper is written for g_t the geodesic flow on a manifold of (variable) negative curvature; however, the arguments carry over to general Anosov flows. We present the argument for Anosov flows.

To simplify the notation, we assume $\kappa = 1$ in the definition of Anosov flow. We also assume $\dim E^{s} = \dim E^{u} = 1$.

Notation. For functions f(x), g(x) we write $f(x) \prec g(x)$ if there exists a constant C > 0 such that $f(x) \leq Cg(x)$ for all x in the domain. We write $f(x) \asymp g(x)$ if $f(x) \prec g(x)$ and $f(x) \succ g(x)$. We may extend this notation to measures $\mathcal{A} \subset \mathcal{P}^{\mathcal{P}}$ $\mu_{\mathcal{P}} \vee \mathcal{P} = \mathcal{P} =$

Hamenstädt distance

Hamenstädt distance $d_H^{u}(\bullet, \bullet)$ is defined on unstable foliation W^{u} .

- The definition.
- 2 Verifying the triangle inequality.

3 For $r < 1, x \in M$, $\mu_{BM}^{u}(B_{H}^{u}(x,r)) \asymp r^{\delta} \in \mathcal{C}$

diffency Fix noy ew,

nk 1

$$\begin{aligned} \mathbf{x}_{t} &:= \Im_{t} \mathbf{x}_{t}, \ \exists_{t} := \Im_{t} \Im_{t} \mathbf{x}_{t}, \ \exists_{t} (\mathbf{x}_{t}, \mathbf{y}_{t}) \\ d_{t} (\mathbf{x}_{t}, \mathbf{y}_{t}) &:= d^{*} (\mathbf{x}_{t}, \mathbf{y}_{t}) \\ \exists T_{t} = T (\mathbf{x}_{t}, \mathbf{y}) \quad \text{s.t.} \quad d_{T} (\mathbf{x}_{t}, \mathbf{y}_{t}) = 1, \\ we \quad define \quad d_{H} (\mathbf{x}_{t}, \mathbf{y}) &:= e^{T} \end{aligned}$$

 $\land \land \land \land$

Let T be such that
$$r = e^{T}$$

then $B_{t+an}^{u}(n, e^{T}) = g_{-T}(B(n, 1))$
 $\mu^{u} Cm(D_{t+an}^{u}(n, e^{T})) = \eta_{-T}(B(n, 1))$
 $e^{\delta T} M Cm(D_{t+an}^{u}(n, 1)) = \eta_{-T}$

$$\{\mu(n(y,1))\} \in \mathcal{M}$$

Hausdorff measure

For a metric space (X, d), the δ -dimensional Hausdorff measure μ_H is defined by

$$\mu_H(A) \coloneqq \sup_{\epsilon \to 0} \inf \{ \sum_{i=0}^{\infty} r_i^{\delta} \mid r_i \le \epsilon, \text{ and } A \subset \bigcup B(x_i, r_i) \}$$

for A a Borel subset of X.

Definition

We denote the δ -dimensional Hausdorff measure on $W^{\rm u}_{-}$ with respect to $d^{\rm u}_H$ by $\mu^{\rm u}_H$.)

E

 \mathcal{A}

<ロト < 回 > < 回 > < 回 > < 回 >

 $\mu_{\rm BM}^{\rm u} \asymp \mu_{H}^{\rm u}$ $2 \ \mu_H^{\rm u} \prec \mu_{\rm BM}^{\rm u}.$

 $\geq MH(A) \leq MBM(A) \leq C MH(A)$

November 22, 2022 11 / 13

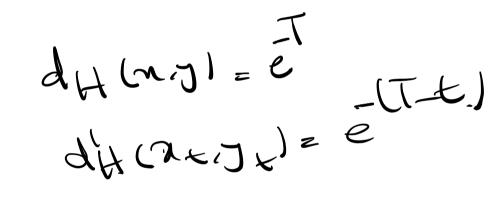
 $\mathcal{A} \mathcal{A} \mathcal{A}$

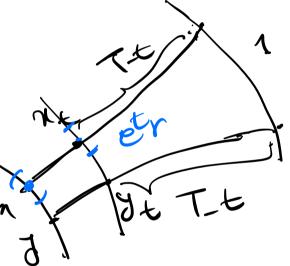
<ロト < 団ト < 団ト < 団ト = 三目

MH X MBM Construct good covers of ACB(NG) Fix an interval Ich, let T be laye enough. Ma

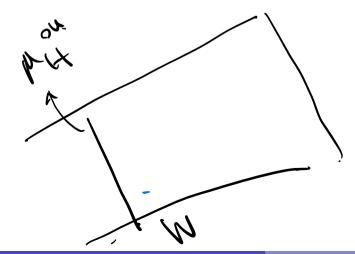
${\rm Hausdorff\ measure\ on}\ M$

- For x, y ∈ W^u, d^u_H(g_tx, g_ty) = e^td_H(x, y). Hence dµ^u_H(g_tx) = e^{δt}dµ^u_H(x).
 Define µ^{0u}_H on W^{0u} by dµ^{0u}_H(y) = e^{δt}dµ^u_H(x) dt.
- 3 Define μ_{H}^{s} .
- Of Define μ_H on M so that locally, $d\mu_H = d\mu_H^{0u} d\mu_H^s$. Then, in a flow box [U, V], $\mu_H(z) = e^{-\delta\theta(x,y)} d\mu_H^{0u}(x) d\mu_H^s(y)$ for z = [x, y].



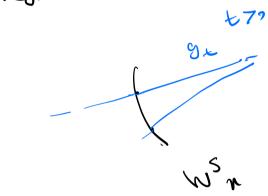


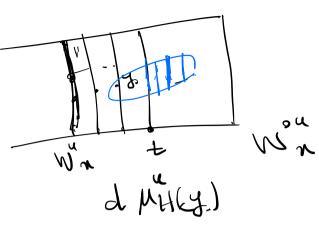
◆□▶ ◆□▶ ◆□▶ ◆□▶



Ŧ

 $\mathcal{A} \mathcal{A} \mathcal{A}$





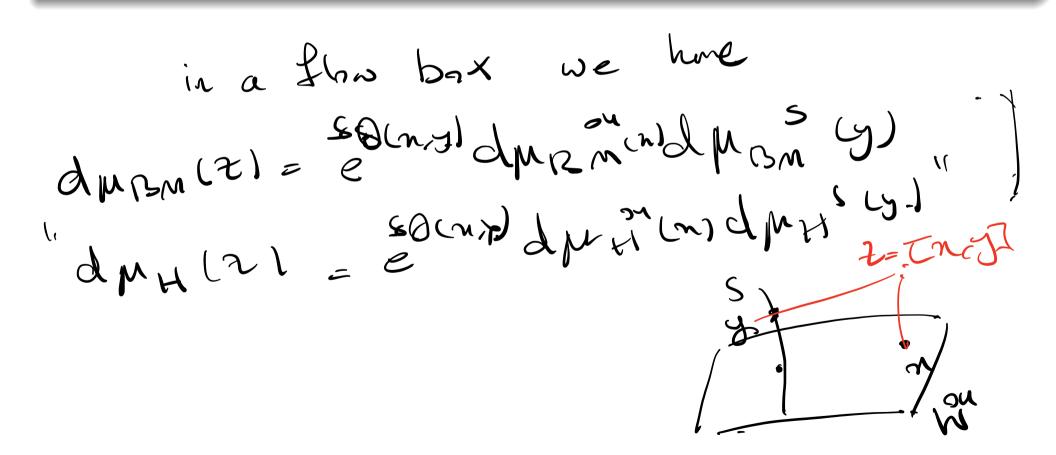
$\mu_{\rm BM}$ and μ_{H} are the same, up to a constant

1 There exists a constant C > 0 such that $\mu_H = C \mu_{BM}$.

2 There are constants $C^{\rm u}$ and $C^{\rm s}$ such that $\mu_{H}^{\rm u} = C^{\rm u} \mu_{\rm BM}^{\rm u}$ and $\mu_{H}^{\rm s} = C^{\rm s} \mu_{\rm BM}^{\rm s}$.

Question

Find $C^{\mathrm{u}}, C^{\mathrm{s}}!$



E

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団 > < 巨 > < 巨 >

$$\mu \otimes \nu = \mu' \otimes \nu' = \mu = C_1 \mu'$$

$$\nu = C_2 \nu'$$