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Billiard in a polygon, Q

Rules:

I Point mass in the polygon.

I Travels in a straight line until it hits a side.

I After hitting the side, angle of incidence=angle of reflection.

I Flow is not defined at corners of the polygon.
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This is a dynamical system on the unit tangent bundle of Q,

XQ := Q × S1/ ∼

and we let F t
Q denote the straight line flow on XQ .

F t
Q has a natural 3 dimension volume mQ .

Theorem
(C-Forni) There exists a polygon Q so that the flow on XQ is
weakly mixing with respect to mQ .

This strengthens,

Theorem
(Kerckhoff-Masur-Smillie ’86) There exists a polygon Q so that
the flow on XQ is ergodic with respect to mQ .



This is a dynamical system on the unit tangent bundle of Q,

XQ := Q × S1/ ∼

and we let F t
Q denote the straight line flow on XQ .

F t
Q has a natural 3 dimension volume mQ .

Theorem
(C-Forni) There exists a polygon Q so that the flow on XQ is
weakly mixing with respect to mQ .

This strengthens,

Theorem
(Kerckhoff-Masur-Smillie ’86) There exists a polygon Q so that
the flow on XQ is ergodic with respect to mQ .



What else is known?

1. F t
Q has topological entropy 0 (Katok).

2. F t
Q has at most a countable number of families of homotopic

periodic orbits (Boldrighini-Keane-Marchetti).
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What dont we know?

1. Is there a Q so that F t
Q is mixing?

2. Is F t
Q ergodic iff Q has at least one angle that is not a

rational multiple of π?

3. Does every polygon Q have a periodic orbit?
-Yes if Q has all angles rational multiples of π. These are
called rational polygons.
-Yes for triangles with angles of at most 112.3 degrees
(Tokarsky-Garber-Marinov-Moore)
– improving on less than 100 degrees by Schwartz

4. Is there a Q so that F t
Q is minimal?Is there a Q so that F t

Q is
topologically mixing?
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Rational polygons

Rational polygons are a special situation.

The group of reflections about the lines through the origin parallel
to the sides is a finite group, GQ . For each θ, Q × GQθ is an F t

Q

invariant surface, Sθ. XQ is foliated by F t
Q invariant surfaces. So,

when Q is rational F t
Q is never ergodic because of these invariant.

Theorem
(Kerckhoff-Masur-Smillie) For every rational polygon Q, for almost
every invariant surface Sθ ⊂ XQ , F t

Q is ergodic with respect to the
(2-dimensional) Lebesgue measure on Sθ ⊂ XQ .

We denote this measure λθ.
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A word on the proof of Kerckhoff-Masur-Smillie’s Theorem

Let Lip(XQ) be the set of 1-Lipschitz functions on XQ .

Lemma
F t
Q is ergodic iff for all f ∈ Lip(XQ) we have that there exists

Ti →∞ so that

lim
i→∞

∫
XQ

(
| 1

Ti

∫ Ti

0
f (F t(θ, x))dt −

∫
XQ

fdmQ |
)
dmQ = 0. (1)



A word on the proof of Kerckhoff-Masur-Smillie’s Theorem

Proposition

For all ε > 0 if Q satisfies that for all f ∈ Lip(XQ) there exists a T
so that ∫

XQ

(
| 1
T

∫ T

0
f (F t

Q(θ, x))dt −
∫

fdmQ |
)
dmQ < ε

then the set of Q ′ so that for all f ∈ Lip(X (Q ′)) there exists T so
that ∫

XQ′

(
| 1
T

∫ T

0
f (F t

Q′(θ, x))dt −
∫

fdmQ′ |
)
dmQ′ < 2ε

contains an open neighborhood of Q.

By the ergodicity result of Kerckhoff-Masur-Smillie this set is dense
for each fixed ε.
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If Q is rational, for almost every θ, for every f ∈ Lip(XQ)

lim
T→∞

∫
Sθ

(
| 1
T

∫ T

0
f (F t(θ, x))dt −

∫
Sθ

fdλθ|
)
dλθ = 0.

If GQ contains a small rotation, for all f ∈ Lip(XQ) we have

|
∫
XQ

fdmQ −
∫
Sθ

fdλθ|

is small (for all θ).
By the Baire Category Theorem we have that a dense Gδ subset of
the space of polygons satisfies (??).
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A word on the proof of weak mixing

Weak mixing of F t
Q is equivalent to the ergodicity of (F t

Q × F t
Q).

So our proof is similar to Kerckhoff-Masur-Smillie’s proof:
Replace Lip(XQ) with Lip(XQ × XQ).
Replace the ergodicity of F t

Q restricted to a.e. Sθ when Q is
rational by the ergodicity of F t

Q × F t
Q restricted to a.e. Sθ × Sφ

when Q is rational.

Theorem
(C-Forni) For every rational Q, for almost every (θ, φ) we have
that F t

Q × F t
Q is λθ × λφ ergodic.
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A translation surface



SL(2,R) action

SL(2,R) acts on translation by acting on the charts.

Figure:

(
2 0
0 1

2

)
applied to a translation surface



Let gt =

(
et 0
0 e−t

)
and rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.



Theorem
(C-Forni)Let M be a translation surface and F t

θ denote the flow in
direction θ. For a.e. θ, φ, F t

θ × F t
φ is λ2M ergodic.

We show that for any α ∈ R \ {0} we have

λS1({θ : α is an eigenvalue for F t
θ}) = 0.

Eigenvalue equation: f (F t
θ x) = e2πitαf (x).

Is it uniquely ergodic?
Hubert and I showed that almost surely it is with respect to any
SL(2,R) invariant measure.
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Veech Criterion: continuous case

If α is a continuous eigenvalue of F t , Ji are sequence of
transversals so that diam(J`)→ 0 and ~ri are the sequence of return
time vectors to Ji then

α~ri → ~0 (mod Zd).

Indeed f (F tx) = e2πitαf (x) and lim
`→∞

supx ,y∈J` |f (x)− f (y)| = 0.

So if x ,F tx ∈ J` then e2πiαt ∼ 1.
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Veech Criterion

If α is an eigenvalue of F t , Ji are a sequence of transversals so
that ~ri are the sequence of return time vectors to Ji ,

and there
exists c > 0 so that

I F s is continuous on Ji for all 0 ≤ s < c
|Ji |

I the level sets of ~ri have length at least c |Ji |
then

α~ri → ~0 (mod Zd).
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Pictures for a translation surface

r1
r4

r ′1 =
r1 + 2r3 + r4

r ′4 = r1 + 2r3

~r ′ =


1 0 2 1
1 0 1 1
1 1 2 0
1 0 2 0

~r
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Renormalization

Applying

(
4 0
0 1

4

)



Veech criterion final form

Transversals are given by a cocycle
RV : R×H → SL(d ,Z).
That is, a transversal on Y of size roughly 1

L will have its return
time vector given by RV (log(L),Y )~r1.

Proposition

(Veech Criterion slight lie) If the exists a compact set K ⊂ H and
ε > 0 so that for arbitrarilly large L we have
‖αRV (log(L),Y )~r1‖Zd > ε and glog(L)Y ∈ K then α is not an
eigenvalue for F t .

Really there exists s := sK and need

(
sL 0
0 1

sL

)
Y ∈ K and(

L
s 0
0 s

L

)
Y ∈ K as well.
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Proof (up to some lies)

To use the Veech criterion, we show that for any fixed ~v 6= 0 we
have that for most θ, ‖RV (t, rθY )~v‖ grows exponentially quickly
in t.

In fact there exists σ, ρ > 0 so that

λ({θ : ∃tθ < log(N) so that ‖RV (tθ, rθY )~v‖
> Nσ‖v‖ and gtθ rθY ∈ K}) < N−ρ.

~v = α~rk − ~n.

Iterating this for N1 = 1
‖~v‖ , N2 = 1

‖RV (tθ,rθY )~v‖ ,... we obtain
Veech’s criterion.
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Proof of large deviations estimate

Proposition

(C-Eskin Lie) For any ε > 0 there exists L and U an open set with
µY (U) > 1− ε such that if Y ∈ U and ~v is any vector then for all
but an ε measure set of θ we have
(λ1 − ε)L < |RV (gL, rθY )~v | < (λ1 + ε)L.

Because gt expands circles, one can show that the conditional
probability that |RV (gt+L,rθY )~v |

|RV (gt ,rθ)~v | < (λ1 − ε)L given RV (gt , rθY ) and
that gtrθY ∈ U is at most Cε.
If the measure of θ so that

M∑
i=0

χU(gLi rθY ) > M − CMε

we have the key estimate.
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Proof of large deviations estimate

To prove this result we results of Eskin-Mirzakhani-Mohammadi:

Theorem
(Eskin-Mirzakhani-Mohammadi) We say Y is T , ε bad if

| 1

Tσ

∫ T

0

∫ σ

0
χU(gtrθY )dθdt − µY (U)| > ε.

The T , ε bad set is contained in the union of neighborhoods of
finitely many affine (SL2(R)-invariant) submanifolds. Moreover for
fixed ε, σ the µY -measure of these neighborhoods goes to zero as
T goes to infinity.



Theorem
(Eskin-Mirzakhani-Mohammadi) Let M be any affine submanifold
contained in supp(µ). Then there exists an SO2 invariant function
f , constants c , b, σ, t0 ∈ R, c < 1 such that

1. f (x) =∞ iff x ∈M. Also f is bounded on compact subsets
of H1(α) \M. Also {x : f (x) ≤ N} is compact for any N.

2. 1
2π

∫ 2π
0 f (gtrθx)dθ ≤ cf (x) + b for all t > t0.

3. σ−1f (x) ≤ f (gsx) ≤ σf (x) for all s ∈ [−1, 1].

We now state an anachronistic corollary:

Corollary

(Athreya) For almost every θ and all large enough T the set of i
such that giT rθY is in the T , ε bad set has upper density at most ε.
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Using this corollary, our first theorem of
Eskin-Mirzakhani-Mohammadi and the expansion of circles by gt
we obtain that for all by an exponentially small in M set of θ, there
exists C so that

M∑
i=0

χU(gLi rθY ) > M − CMε.

C is independent of ε.
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