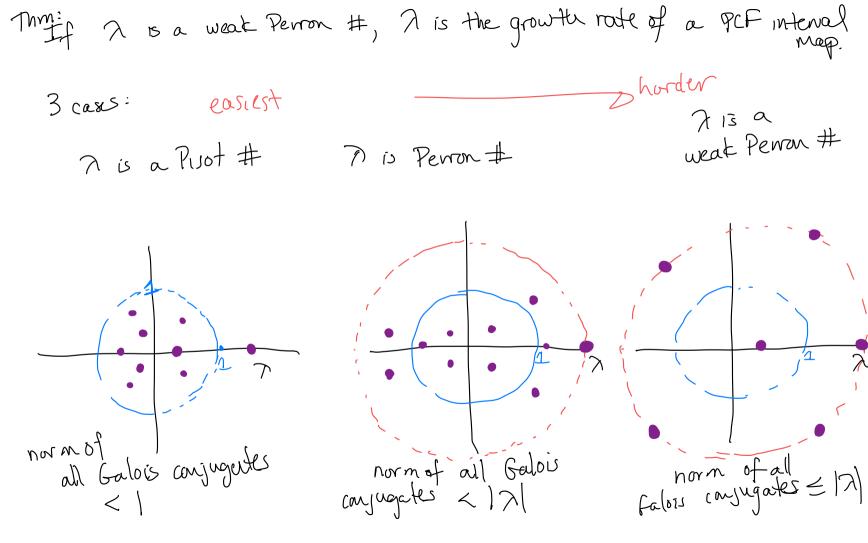
· topological entropy is a topological invariant • If X 13 a d-dim methic space and f has expansion (Lipschitz) constant KZL then $h_{top}(f) \leq d \cdot \log(K)$. • pseudo-Anosov surface diffeomorphisms admit Markov partitions: decompose the surface into "rectangles" so that each rectangle is mapped onto a finite union of the other rectangles. (like a subshift of finite type) = topological entropy. (all e^{htopff)} the "growth" rate The log of the dilatation ("stretch factor") re. ehtop(f) = dilatration.

An algebraic integer is defined by a psynomial with integer coeffs.
Smonie (leading coeff=1) x²-K-1=0
The Galois conjugates of
$$\lambda$$
 and inveducible
are the roots of this psynomial.
(weak Percon: $\lambda \ge |\lambda|$ for all
Galois conjugate $\lambda \neq 2$
(meak Percon: $\lambda \ge |\lambda|$ for all
Galois conjugate $\lambda \neq 2$
(he growth rate of a PCF multimodal
memoral map $\Longrightarrow \lambda$ is weak Perron.
(Also: some conclusion for ergodic train track representatives
of suter automorphisms of free groups.)



•

Geometry of a number field
$$Q(\overline{A})$$

A neat result: Fix any alg. integer \overline{A}
Let $\lambda_{(1)}, \dots, \lambda_{(r)}$ be the real Galois conjugates of \overline{A}
Let $\lambda_{(1)}, \dots, \lambda_{(r)}$ be the real Galois conjugates of \overline{A}
Let $\lambda_{(rn)}, \dots, \lambda_{(rto)}$ be one of each pair of complex conjugates
Let $\lambda_{(rn)}, \dots, \lambda_{(rto)}$ be one of each pair of complex (onjugates
that are Galois conjugates of \overline{A} .
Define $\overline{\Phi}: \mathcal{O}_{Q(A)} \rightarrow \mathbb{R} \times \mathbb{C}^{S}$ by \mathbb{R}^{rDS} $\mathbb{C} = \mathbb{R} \times \mathbb{R}$
where $\overline{L}_{i}: \mathcal{O}_{Q(A)} \rightarrow \mathbb{C}$ is the map that replaces λ with $\lambda^{(i)}$
i.e. $\overline{L}_{i}(a_{0}+a_{1}\lambda+\dots+a_{n-1}\lambda^{n-1}) = a_{1}+a_{2}\lambda_{(i)}+\dots+a_{n-1}\lambda^{n-1}$
Then $\overline{\Phi}$ is mjective and $\overline{\Phi}(\mathcal{O}_{Q(A)})$ is a lattice. \overline{A} diverse
 $\rightarrow A$ closed ball around the origin in $\mathbb{R} \times \mathbb{C}^{S}$ cartains subgroup.
Finitely many points of $\overline{\Phi}(\mathcal{O}_{Q(A)})$!

 $\phi = 1+\sqrt{5}$ Galors (oug. $1-\sqrt{5} = \phi_{12}$ $\mathcal{O}_{Q(1+\sqrt{2})} = \sum_{m \in \mathbb{N}} m(n \in \mathbb{N})$ being alg. into $\frac{m t n \phi}{\phi} \left(m t n \phi \right) = \left(m t n \phi_1, m t n \phi_2 \right)$

Claim: Let
$$\lambda$$
 be Asot. Let $f: [O_1] \rightarrow [O_1]$ be a uniform λ -
expander whose critical points and critical period are in Q(λ).
Then f is PCF.
Thurston's proof: W2OG, we may assume all critical pts/values in ZEJ.
(Scale $[O_1]$ by an integer to clear denominators.).
(Scale $[O_1]$ by an integer to clear denominators.).
Now, all pieces of f have the form $f_i(x) = a_i \pm \lambda x$ for some $a_i \in ZDJ$
 $Now, all pieces of f have the form $f_i(x) = a_i \pm \lambda x$ for some $a_i \in ZDJ$
 $Now, all pieces of f have the real Golous consts of λ
 f_1 for each $\lambda_{(\lambda)}$ define $f_i^{(\lambda)}: C \rightarrow C$ by $f_i^{(\lambda)}(x) = f_{(\lambda)}(a_i) \pm \lambda_{(\lambda)} x$
Let z be a critical pt. The orbit of z under f is given by
some sequence of compositions $f_{i_1} \circ \dots \circ f_{i_n}(z)$.
"Lift this to an orbit in $\underline{\Psi}(O_{(0,r)}) \subset IR^r \times C^s$ so you get the
sequence of $pt$$$

Thank you!