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1 Preliminaries

Let (Xn)n≥0 be a simple random walk in Zd with d ≥ 1. Note that the time index will always
be N. For every n ∈ N and x, y ∈ Zd we write Pn(x, y) = pn(x, y) = Px(Xn = y) for the n-step
transition probability from x to y. Note that if x = 0 we will sometimes omit it from the notation
and we will simply write pn(y) for pn(0, y). Note that by translation invariance of the walk we have
pn(x, y) = pn(0, x− y). We say that n and x are of the same parity if pn(x) > 0. For every n and
x we write

pn(x) = 2 ·
󰀕

d

2πn

󰀖d/2

· exp
󰀕
−d󰀂x󰀂2

2n

󰀖
.

In dimension one, a direct calculation using Stirling’s formula immediately yields the following:

Exercise 1.1. Let X be a simple symmetric random walk on Z starting from 0. Show that for
all n ∈ N and m ∈ Z with m ≤

√
n we have

P0(X2n = 2m) = p2n(2m)(1 + o(1)) as n → ∞.

Hint : Recall Stirling’s formula n! ∼ nn
√
2πn · e−n as n → ∞.
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In higher dimensions, one can also obtain an analogous result, but it is more tedious. We state
without proof the local CLT that we will use very often in this course.

Theorem 1.2. (Local CLT [6, Proposition 1.2.5]) Let d ≥ 1 and let X be a simple random walk
in Zd started from 0. Suppose that n and x are of the same parity. Let α < 2/3. If 󰀂x󰀂 ≤ nα, then

pn(x) = pn(x) ·
󰀃
1 +O(n3α−2)

󰀄
.

Exercise 1.3. LetX be a simple random walk on Zd started from 0. Show using Azuma’s inequality
or otherwise that there exist positive constants c1 and c2 so that for all x ∈ Zd

P0(Xn = x) ≤ c1 exp(−c2󰀂x󰀂2/n).

Notation: For functions f, g : N → R+ we write f ≲ g if there exists a positive constant C so that
for all n ∈ N we have f(n) ≤ Cg(n). We write f ≳ g if g ≲ f . Finally we write f ≍ g if f ≲ g
and g ≲ f .

By the local CLT we see that

p2n(0) ≍
1

nd/2
, (1.1)

and hence we recover Polya’s theorem: when d ≤ 2, the SRW is recurrent, while when d ≥ 3 it is
transient.

Exercise 1.4. Prove (1.1) using Stirling’s formula and the concentration of a Binomial random
variable of parameters n and 1/d around its mean.

In the transient regime, we now define the Green’s function as follows: for x, y ∈ Zd with d ≥ 3

g(x, y) = Ex

󰀥 ∞󰁛

n=0

1(Xn = y)

󰀦
=

∞󰁛

n=0

pn(x, y).

When x = 0 we simply write g(y) for g(0, y). By conditioning on the first step of the random walk
it is immediate to deduce the following:

Lemma 1.5. The Green’s function g : Zd → R+ is harmonic on Zd \ {0}.

Exercise 1.6. Using reversibility and the Cauchy-Schwartz inequality prove that for all x ∈ Zd

p2n(0, x) ≤
󰁳

p2n(0, 0)p2n(x, x) = p2n(0, 0). (1.2)

Combining (1.1) together with (1.2) we see that the Green’s function is well defined when d ≥ 3,
as we get a converging series.

The following asymptotic expression for the Green’s function will be used throughout these notes.

Theorem 1.7 (Spitzer). For all d ≥ 3 and α < d as 󰀂x󰀂 → ∞ we have

g(x) =
c(d)

󰀂x󰀂d−2
+ o(󰀂x󰀂−α), where c(d) =

d

2
Γ(d/2− 1)π−d/2.

Exercise 1.8. Prove Spitzer’s result using the local CLT and by approximating the Riemann sum
by an integral (see [7, Lemma 12.1.1]).

2



In the following exercise we obtain an upper bound on g(x) of the correct order but without the
sharp constant provided to us by Spitzer’s result, which in turn follows by the local CLT.

Exercise 1.9. Let X be a SRW in Zd with d ≥ 1. Without appealing to the local CLT establish
the following:

1. For all x of the same parity as 0 and satisfying 󰀂x󰀂 ≤
√
n prove that

pn(0, x) ≍
1

nd/2
.

2. Using reversibility prove that

P0(Xn = x) ≤ 2 · P0

󰀃
Xn = x, 󰀂X⌊n/2⌋󰀂 ≥ 󰀂x󰀂/2

󰀄
.

3. Using the above and Azuma’s inequality, show that there exist positive constants c1 and c2
such that for all x

P0(Xn = x) ≤ c1

nd/2
exp(−c2󰀂x󰀂2/n).

4. Combining all of the above show that

g(x) ≍ 󰀂x󰀂2−d.

For a set A ⊆ Zd we write

HA = inf{n ≥ 0 : Xn ∈ A} and 󰁨HA = inf{n ≥ 1 : Xn ∈ A}

for the first hitting and first return time to A respectively.

For a finite set A with x ∈ A, we write

gA(x, y) = Ex

󰀵

󰀷
HAc󰁛

j=0

1(Xj = y)

󰀶

󰀸

We write B(0, n) = {x ∈ Zd : 󰀂x󰀂 < n} for the Euclidean lattice ball of radius n.

Lemma 1.10. Let x ∈ B(0, n/4) and T = inf{j ≥ 0 : Xj ∈ ∂B(0, n)}. Then for all y ∈ ∂B(0, n)
we have

Px(XT = y) ≍ 1

nd−1
,

where the constants appearing in ≍ are universal over all n.

Sketch of proof. Let ζ = inf{j ≥ 1 : Xj ∈ {0} ∪ ∂B(0, n)}. Then check that

Px(XT = y) = gB(0,n)(0, 0)Py(Xζ = 0) .

Then it suffices to show that Py(Xζ = 0) ≍ n1−d, as gB(0,n)(0, 0) ≍ 1. To prove this, we define an
intermediate scale, i.e. we first wait for the walk to either hit B(0, n− 3) or exit B(0, n). We then
require the walk to be at B(0, n − 3) at this time and estimate the probability that starting from
there the walk hits 0 before hitting ∂B(0, n). Finally to achieve this, we use the harmonicity of the
Green’s function g.

Theorem 1.11 (Harnack inequality). Let f : B(0, n) → R+ be a harmonic function in B(0, n−1).
Then for all 0 < r < 1, there exists a positive constant C = Cr so that

sup
x∈B(0,rn)

f(x) ≤ C inf
x∈B(0,rn)

f(x).
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2 Intersections of random walks

In this section we will study the question of intersections of independent simple random walks on Zd

for all d. We start with the question of collisions to see the analogy.

So let X and Y be two independent simple random walks on Zd for d ≥ 1 starting from 0. Let

Cn =

n󰁛

i=0

1(Xi = Yi).

Then taking expectations of both sides we get

E[Cn] =

n󰁛

i=0

P0(X2i = 0) ≍
2n󰁛

i=1

1

id/2
≍

󰀻
󰁁󰀿

󰁁󰀽

√
n if d = 1

log n if d = 2

1 if d ≥ 3.

We thus see from here that dimension 2 is critical for the question of collisions which is of course
the well-known theorem of Polya.

Next we move on to intersections. Let In be the total number of intersections of X and Y up to
time n, i.e.

In =

n󰁛

i=0

n󰁛

j=0

1(Xi = Yj).

Taking expectations above we get

E[In] =
n󰁛

i=0

n󰁛

j=0

P0(Xi+j = 0) ≍
2n󰁛

i=0

i · pi(0, 0).

Using the LCLT, we now get that

E[In] ≍
n󰁛

i=1

1

i
d
2
−1

≍

󰀻
󰁁󰀿

󰁁󰀽

√
n if d = 3

log n if d = 4

1 if d ≥ 5.

We see thus that dimension 4 is the critical dimension when considering intersections analogously
to dimension 2 being the critical dimension when considering collisions.

In the next section we are going to calculate the probability that one random walk avoids a two
sided random walk in four dimensions. Then we will move to higher dimensions and study large
deviations events for the number of intersections, i.e. we will bound the probability that the number
of intersections is very large. From the above we see that in high dimensions, the expected number
of intersections is of constant order.

2.1 Intersections in four dimensions

As we already discussed, dimension 4 is the critical dimension for the problem of intersections. What
is usually expected at the critical dimension is logarithmic corrections to mean field behaviour. The
main result of this section is to prove Lawler’s result on the non-intersection between a random
walk and an independent two-sided random walk in Z4.
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Theorem 2.1 (Lawler (1985)). Let X1, X2 and X3 be three independent simple random walks
in Z4 starting from 0. Then as n → ∞

P
󰀃
X1[1,∞) ∩ (X2[0, n] ∪X3[0, n]) = ∅, 0 /∈ X2[1, n]

󰀄
∼ π2

8
· 1

log n

The proof that we will present follows Lawler’s original argument with some simplifications due to
Bai and Wan [3] and Bruno Schapira [9], who generalised it to branching random walks that we
will discuss in the final section.

The whole proof is based on the magic equality of Lemma 2.2 which is a consequence of the last
exit decomposition formula that we will state shortly. First we need to set up some notation.

Let X be a two-sided simple random walk in Z4, i.e. (Xn)n≥0 and (X−n)n≥0 are two independent

random walks started from 0. Let 󰁨X be an independent simple random walk in Z4 also started
from 0. For every integers a < b we write R[a, b] = {Xa, . . . , Xb} and for a, b ∈ N we set 󰁨Rn =
{ 󰁨Xa, . . . , 󰁨Xb} for the ranges of the two walks during the time interval [a, b]. Let ξℓn and ξrn be two
independent geometric random variables of parameter 1/n each (P

󰀃
ξℓn = j

󰀄
= 1/n · (1 − 1/n)j for

all j), also independent of the walks. Finally we define

An = { 󰁨R[1,∞) ∩R[−ξℓn, ξ
r
n] = ∅}

en = 1(0 /∈ R[1, ξrn])

Gn =
󰁛

−ξℓn≤k≤ξrn

g(Xk).

Lemma 2.2. With the above definitions we have

E[1(An) · en ·Gn] = 1.

In Lemma 2.4 below we will show that Gn is concentrated around its mean (which is of order log n).
Hence, if we could just pull it out of the expectation above, we would get exactly the statement
of the theorem. The proof will then proceed by showing that this is actually correct up to smaller
order terms.

Before giving the proof of the magic formula (Lemma 2.2) we state and prove the last exit decom-
position formula which is an easy consequence of the Markov property. This result will be used
repeatedly throughout these notes.

Lemma 2.3 (Last exit decomposition formula). Let d ≥ 3 and let A ⊆ Zd be a finite set. Then
for all x ∈ Zd we have

Px(HA < ∞) =
󰁛

y∈A
g(x, y)Py

󰀓
󰁨HA = ∞

󰀔
.

Proof. Let LA = sup{t ≥ 0 : Xt ∈ A} be the last time X visits A with the convention that
LA = −∞ if the set is empty. Then by transience of the walk we get {HA < ∞} = {0 ≤ LA < ∞},
and hence

Px(HA < ∞) = Px(0 ≤ LA < ∞) =

∞󰁛

n=0

󰁛

y∈A
Px(LA = n,Xn = y) =

∞󰁛

n=0

󰁛

y∈A
Px(Xn = y)Py

󰀓
󰁨HA = ∞

󰀔

=
󰁛

y∈A
g(x, y)Py

󰀓
󰁨HA = ∞

󰀔

where for the penultimate equality we used the Markov property.

5



Proof of Lemma 2.2. For every nearest neighbour path (x1, . . . , xm) we define

B(m,x1, . . . , xm) = {ξℓn + ξrn = m, X−ξℓn+k −X−ξℓn
= xk, ∀ 1 ≤ k ≤ m},

and for all 0 ≤ j ≤ m we define

B(m, j, x1, . . . , xm) = {ξℓn = j, ξrn = m− j, X−ξℓn+k −X−ξℓn
= xk, ∀ 1 ≤ k ≤ m}.

Using the independence of the increments of the walk and the geometric random variables we then
obtain

P(B(m, j, x1, . . . , xm) | B(m,x1, . . . , xm)) =
1

m+ 1
.

Setting x0 = 0, we then have

E[1(An) · en ·Gn]

=

∞󰁛

m=0

󰁛

(x1,...,xm)

P(B(m,x1, . . . , xm))

m+ 1
·

m󰁛

k=0

m󰁛

j=0

1(xj /∈ {xj+1, . . . , xm})

× P
󰀓
(xj + 󰁨R[1,∞)) ∩ {x0, x1, . . . , xm} = ∅

󰀔
g(xj − xk).

Using the last exit decomposition formula to the set {x0, . . . , xm} and the starting point xk we get

1 =

m󰁛

j=0

1(xj /∈ {xj+1, . . . , xm})× P
󰀓
(xj + 󰁨R[1,∞)) ∩ {x0, x1, . . . , xm} = ∅

󰀔
g(xj − xk).

Substituting this above we obtain

E[1(An) · en ·Gn] =

∞󰁛

m=0

󰁛

(x1,...,xm)

P(B(m,x1, . . . , xm)) = 1,

and this concludes the proof.

Lemma 2.4. There exists a positive constant C so that the following holds. Let X be a simple
random walk on Z4 started from 0 and let ξ be an independent geometric random variable of mean n.
Then

E

󰀥
ξ󰁛

i=0

g(Xi)

󰀦
=

4

π2
· log n+O(1) and Var

󰀣
ξ󰁛

i=0

g(Xi)

󰀤
≤ C log n.

We defer the proof of this lemma to the end of the section and we now give the

Proof of Theorem 2.1. Lemma 2.2 states that

E[1(An) · en ·Gn] = 1.

We now get

E[1(An) · en] =
1

E[Gn]
+

1

E[Gn]
· E[1(An) · en · (E[Gn]−Gn)] . (2.1)

Let ε > 0 and set
B = {|Gn − E[Gn] | ≥ ε log n}.
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Then we have

E[1(An) · en · |E[Gn]−Gn|] ≤ ε log n · E[1(An) · en] + E[1(An) · |E[Gn]−Gn| · 1(B)] . (2.2)

Using Cauchy-Schwartz for the second term together with Lemma 2.4, we obtain

E[1(An) · |E[Gn]−Gn| · 1(B)] ≤
󰁳

P(B)Var(Gn) ≲ 1.

Substituting this bound into (2.2) and then into (2.1), taking ε sufficiently small, using Lemma 2.4
and rearranging we deduce

E[1(An) · en] ≲
1

log n
. (2.3)

Claim 2.5. We have

P(An) ≲
1

log n
and P

󰀓
󰁨R[1,∞) ∩R(0, ξrn] = ∅

󰀔
≲ 1√

log n
. (2.4)

We now explain that it suffices to prove that

E[1(An) · |E[Gn]−Gn| · 1(B)] ≲ 1

(log n)1/4
. (2.5)

Indeed, once this is established, then we get
󰀏󰀏󰀏󰀏E[1(An) · en]−

1

E[Gn]

󰀏󰀏󰀏󰀏 ≤ ε · E[1(An) · en] +O
󰀕

1

(log n)5/4

󰀖
,

and, since this holds for any ε > 0 and E[Gn] ∼ 8/π2 log n by Lemma 2.4, this concludes the proof
in the case where we run the two-sided walk up to two geometric times. To pass to the fixed n
case, one needs to use that P

󰀃
n/(log n)2 ≤ ξrn ≤ n(log n)2

󰀄
= 1− (log n)−2 and similarly for ξℓn. So

we now turn to prove (2.5). By the Cauchy-Schwartz inequality we obtain

E[1(An) · |E[Gn]−Gn| · 1(B)] ≤
󰁳

P(An ∩B) · E[(E[Gn]−Gn)2] ≤
󰁳

P(An ∩B) · log n,

where for the last inequality we used Lemma 2.4. It remains to bound the last probability appearing
above. To do this we define

G1
n =

0󰁛

k=−ξℓn

g(Xk) and G2
n =

ξrn󰁛

k=0

g(Xk),

and also two events for i = 1, 2

Bi = {|Gi
n − E

󰀅
Gi

n

󰀆
| ≥ ε log n/2}.

Then it is clear that B ⊆ B1 ∪B2, and hence we deduce

P(An ∩B) ≤ P
󰀓
󰁨R∞ ∩R[−ξℓn, 0] = ∅, B2

󰀔
+ P

󰀓
󰁨R∞ ∩R[0, ξrn] = ∅, B1

󰀔

= 2P
󰀓
󰁨R∞ ∩R[−ξℓn, 0] = ∅

󰀔
P(B2) ≲

1√
log n

· 1

log n
.

Note that for the equality we used the independence between the two sides of the walk X and for
the last step we used the concentration result, Lemma 2.4, together with (2.4). Altogether this
gives

E[1(An) · |E[Gn]−Gn| · 1(B)] ≲ 1

(log n)1/4
,

and this concludes the proof .
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Proof of Claim 2.5. This proof follows closely [9]. Assuming E[1(An) · en] ≲ 1/ log n, we want
to show that

P(An) ≲
1

log n
.

Let σ be the last time that (Xn)n≥0 is at 0. Then we have

P(An) ≤ P
󰀓
󰁨R[1,∞) ∩ (R[−ξℓ√n, 0] ∪R[σ,σ + ξr√n]) = ∅

󰀔
+ P

󰀓
σ + ξr√n ≥ ξrn

󰀔
,

where we took ξr√
n
to be an independent geometric random variable of parameter 1/

√
n. The

second probability appearing on the right-hand side above can be bounded as

P
󰀓
σ + ξr√n ≥ ξrn

󰀔
≤ P

󰀓
ξrn − ξr√n <

√
n
󰀔
+ P

󰀃
σ ≥

√
n
󰀄
.

Now it is easy to see that both these terms are much smaller than 1/ log n.

To control the first probability on the right-hand side above we observe that the walk X after time
σ has the same law as a walk started from 0 and conditioned on never returning to 0. Hence we
get

P
󰀓
󰁨R[1,∞) ∩ (R[−ξℓ√n, 0] ∪R[σ,σ + ξr√n]) = ∅

󰀔
≤ 1

P0

󰀓
󰁨H0 = ∞

󰀔E
󰁫
1(A√

n) · en
󰁬
≲ 1

log n
,

where we used the transience of the walk. This now finishes the proof of the first claim.

We now turn to proving

P
󰀓
󰁨R[1,∞) ∩R[0, ξrn]

󰀔
≲ 1√

log n
.

By conditioning on 󰁨R we get

P
󰀓
󰁨R[1,∞) ∩ (R[−ξℓn, 0] ∪R[0, ξrn])

󰀔
= E

󰁫
P
󰀓
󰁨R[1,∞) ∩ (R[−ξℓn, 0] ∪R[0, ξrn])

󰀏󰀏󰀏 󰁨R[1,∞)
󰀔󰁬

= E
󰁫
P
󰀓
R[−ξℓn, 0] ∩ 󰁨R[1,∞) = ∅

󰀏󰀏󰀏 󰁨R[1,∞)
󰀔
P
󰀓
R[0, ξrn] ∩ 󰁨R[1,∞) = ∅

󰀏󰀏󰀏 󰁨R[1,∞)
󰀔󰁬

= E
󰀗󰀓

P
󰀓
R[−ξℓn, 0] ∩ 󰁨R[1,∞) = ∅

󰀏󰀏󰀏 󰁨R[1,∞)
󰀔󰀔2

󰀘
≥

󰀓
P
󰀓
R[−ξℓn, 0] ∩ 󰁨R[1,∞) = ∅

󰀔󰀔2
.

For the second equality we used the independence of the positive and negative parts of the walk
and for the last inequality we used Jensen’s inequality. Combining this with the first statement
completes the proof.

Proof of Lemma 2.4. Using the local CLT, it is a direct calculation to check that as n → ∞

E

󰀥
n󰁛

i=0

g(Xi)

󰀦
=

4

π2
· log n+O(1).

It is straightforward to see that replacing n by a geometric random variable of parameter 1/n gives
exactly the same asymptotics. It remains to estimate the variance. Note that if instead of the walk
we were considering a Brownian motion, then we could divide this sum between the first hitting
times of balls of radii 2i for i = 0, . . . , log n/2 and we would get a sum of independent terms. With
the walk one can carry through such an argument too, but there are the lattice effects that have
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to be taken care of. So as in Lawler’s proof we simply estimate the variance using the local CLT.
For this we have

Var

󰀣
n󰁛

i=0

g(Xi)

󰀤
=

n󰁛

i=0

Var(g(Xi)) +
󰁛

i ∕=j

Cov(g(Xi), g(Xj)).

It remains to estimate E[g(Xi)g(Xj)]. This can be done employing the local CLT and for the details
we refer the reader to [6].

2.2 Capacity

Let d ≥ 3. Let A be a finite subset of Zd. The capacity of A is defined as the sum of escape
probabilities from A, i.e.

Cap(A) =
󰁛

x∈A
Px

󰀓
󰁨HA = ∞

󰀔
.

We define the equilibrium measure of A to be given by

eA(x) = Px

󰀓
󰁨HA = ∞

󰀔
· 1(x ∈ A).

Exercise 2.6. Let d ≥ 3 and let A ⊆ Zd be a finite set. For all n we let Rn = {X0, . . . , Xn} be
the range of a simple random walk X in Zd. Explain why the following limit exists

lim
n→∞

|Rn +A|
n

and identify its value. (Note that Rn +A denotes the Minkowski sum of Rn and A.)

Corollary 2.7. Let A ⊆ Zd be a finite subset of Zd. Then

Cap(A) = lim
󰀂x󰀂→∞

Px(HA < ∞)

g(x)
.

Proof. Recall the last exit decomposition formula

Px(HA < ∞) =
󰁛

y∈A
g(x, y)Py

󰀓
󰁨HA = ∞

󰀔
.

Dividing both sides of this equality by g(x) we get

Px(HA < ∞)

g(x)
=

󰁛

y∈A

g(x, y)

g(x)
Px

󰀓
󰁨HA = ∞

󰀔
.

Since A is a finite set, using Theorem 1.7 we get

g(x, y)

g(x)
→ 1 as 󰀂x󰀂 → ∞.

Therefore, we conclude

lim
󰀂x󰀂→∞

Px(HA < ∞)

g(x)
=

󰁛

y∈A
Px

󰀓
󰁨HA = ∞

󰀔
= Cap(A)

and this finishes the proof.
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Exercise 2.8. Let A,B ⊆ Zd be finite sets. Show that

Cap(A ∪B) ≤ Cap(A) + Cap(B)− Cap(A ∩B).

Exercise 2.9. Let r > 0. Show that

Cap(B(0, r)) ≍ rd−2.

Exercise 2.10. Let x, y ∈ Zd. Show that

Cap({0}) = 1

g(0)
and Cap({x, y}) = 2

g(0) + g(x− y)
.

Remark 2.11. From the definition of capacity we see that it is intimately related to the question
of intersection of a random walk with a set. If we replace the deterministic set A by a random
set, then the question of capacity reduces to the question of whether a random walk intersects that
independent random set.

Exercise 2.12. Let X be a simple random walk in Z4 and let Rn = {X0, . . . , Xn} be its range up
to time n. Using Theorem 2.1 show that

E[Cap(Rn)] ∼
π2

8
· n

log n
.

Theorem 2.13. Let d ≥ 3 and let A ⊆ Zd be a finite subset of Zd. Then

1

Cap(A)
= inf

󰀻
󰀿

󰀽
󰁛

x,y∈A
g(x, y)µ(x)µ(y) : µ probability measure on A

󰀼
󰁀

󰀾 .

Proof. First of all using the last exit decomposition formula gives that with

µ(x) =
eA(x)

Cap(A)
,

we get
󰁓

x,y∈A g(x, y)µ(x)µ(y) = Cap(A). So it suffices to show that for any other probability
measure µ supported on A we have

󰁛

x,y∈A
g(x, y)µ(x)µ(y) ≥ 1

Cap(A)
. (2.6)

To prove this we define an inner product between any two probability measures µ and ν supported
on A as follows

〈µ, ν〉 =
󰁛

x,y∈A
µ(x)g(x, y)ν(y).

Then taking ν = eA/Cap(A), the normalised equilibrium measure, and for any µ we get using again
the last exit decomposition formula

〈µ, ν〉 = 1

Cap(A)
.

Now by the Cauchy-Schwartz inequality we obtain

1

Cap(A)
= 〈µ, ν〉 ≤

󰁳
〈µ, µ〉〈ν, ν〉 =

󰁳
〈µ, µ〉 · 1󰁳

Cap(A)
.

Rearranging proves (2.6).
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Exercise 2.14. The goal of this exercise is to show that there exists a universal constant c > 0 so
that for any finite subset A of Zd we have

Cap(A) ≥ c · |A|1−2/d. (2.7)

1. Show that there exists a positive constant C so that for every x ∈ A

󰁛

y∈A
g(x, y) ≤ C|A|2/d.

2. Taking µ = 1/|A| in the variational characterisation of capacity and using the above bound
prove (2.7).

The following lemma gives yet another equivalent definition of capacity. Its usefulness will be
apparent in Lemma 2.16, where the walk is required to spend a certain amount of time at each site
of a set A.

Lemma 2.15. Let d ≥ 3 and let A be a finite subset of Zd. Then the capacity of A satisfies

Cap(A) = sup

󰀻
󰀿

󰀽
󰁛

x∈A
ϕ(x) : ϕ : A → R+ and

󰁛

y∈A
g(x, y)ϕ(y) ≤ 1, ∀ x

󰀼
󰁀

󰀾 .

Proof. First of all we see that taking ϕ(x) = eA(x) for x ∈ A satisfies

󰁛

y∈A
g(x, y)ϕ(y) = Px(HA < ∞) ≤ 1

by the last-exit decomposition formula. Moreover,

󰁛

x∈A
ϕ(x) = Cap(A).

Hence, it remains to show that for any function ϕ : A → R+ with
󰁓

y∈A g(x, y)ϕ(y) ≤ 1 for all x,
we have that 󰁛

x∈A
ϕ(x) ≤ Cap(A).

Now observe that using the assumption that
󰁓

y∈A g(x, y)ϕ(y) ≤ 1 for all x we have

󰁛

x∈A
eA(x) ·

󰁛

y∈A
g(x, y)ϕ(y) ≤

󰁛

x∈A
eA(x).

By the last exit decomposition formula we also obtain

󰁛

x∈A
eA(x) ·

󰁛

y∈A
g(x, y)ϕ(y) =

󰁛

y∈A
ϕ(y)

󰁛

x∈A
g(x, y)eA(x) =

󰁛

y∈A
ϕ(y)Py(HA < ∞) =

󰁛

y∈A
ϕ(y).

Combining this with the above shows that

󰁛

y∈A
ϕ(y) ≤ Cap(A)

and this completes the proof.
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For a simple random walk X in Zd with d ≥ 3 we write ℓ(x) =
󰁓∞

i=0 1(Xi = x), for x ∈ Zd, to
denote the local time at x.

Lemma 2.16. Let A be a finite subset of Zd and let t > 0. Then

P(ℓ(x) ≥ t, ∀ x ∈ A) ≤ 2 exp(−t · Cap(A)/2).

Remark 2.17. We write f ∗ g to denote the convolution of f and g, i.e.

f ∗ g(x) =
󰁛

y

f(x− y)g(y).

Lemma 2.18. Let ϕ be a function satisfying 󰀂g ∗ϕ󰀂∞ ≤ 1. Then for all x0 ∈ Zd and all θ ∈ (0, 1)
we have

Ex0

󰀥
exp

󰀣
θ ·

󰁛

x

ϕ(x)ℓ(x)

󰀤󰀦
≤ 1

1− θ
.

Proof. First of all we notice that we can write this quantity as

󰁛

x

ϕ(x)ℓ(x) =
󰁛

x

ϕ(x)

∞󰁛

k=0

1(Xk = x) =

∞󰁛

k=0

ϕ(Xk).

We now upper bounding the n-th moment of
󰁓

x ϕ(x)ℓ(x). For this we have

Ex0

󰀥󰀣 ∞󰁛

k=0

ϕ(Xk)

󰀤n󰀦
= Ex0

󰀵

󰀷
󰁛

k1,...,kn

ϕ(Xk1) · · ·ϕ(Xkn)

󰀶

󰀸 ≤ n!
󰁛

k1≤...≤kn

Ex0 [ϕ(Xk1) · · ·ϕ(Xkn)]

= n!
󰁛

k1≤...≤kn

󰁛

x1,...,xn

Px0(Xk1 = x1, . . . , Xkn = xn)

n󰁜

i=1

ϕ(xi)

≤ n!
󰁛

k1≤...≤kn

󰁛

x1,...,xn

P k1(x0, x1) · P k2−k1(x1, x2) · · ·P kn−kn−1(xn−1, xn)

n󰁜

i=1

ϕ(xi)

= n!
󰁛

x1,...,xn

g(x0, x1) · · · g(xn−1, xn)

n󰁜

i=1

ϕ(xi) ≤ n!,

where in the last step we used the assumption on the function ϕ. So we now deduce

Ex0

󰀥
exp

󰀣
θ
󰁛

x

ϕ(x)ℓ(x)

󰀤󰀦
=

∞󰁛

n=0

Ex0 [(
󰁓

x ϕ(x)ℓ(x))
n]

n!
· θn ≤ 1

1− θ

and this concludes the proof.

Proof of Lemma 2.16. Let ϕ : A → R+ be a function satisfying 󰀂g ∗ ϕ󰀂∞ ≤ 1. It follows that

{ℓ(x) ≥ t, ∀ x ∈ A} ⊆
󰀫
󰁛

x∈A
ℓ(x)ϕ(x) ≥ t ·

󰁛

x∈A
ϕ(x)

󰀬
.

By the exponential Chebyshev inequality we now deduce for any θ ∈ (0, 1)

P(ℓ(x) ≥ t, ∀ x ∈ A) ≤ P

󰀣
󰁛

x∈A
ϕ(x)ℓ(x) ≥ t

󰁛

x∈A
ϕ(x)

󰀤
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≤ exp

󰀣
−θ · t ·

󰁛

x∈A
ϕ(x)

󰀤
· E

󰀥
exp

󰀣
θ ·

󰁛

x

ϕ(x)ℓ(x)

󰀤󰀦
≤ 1

1− θ
· exp

󰀣
−θ · t ·

󰁛

x∈A
ϕ(x)

󰀤
.

Taking now θ = 1/2, optimising over all functions ϕ : A → R+ with 󰀂g ∗ ϕ󰀂∞ ≤ 1 and using
Lemma 2.15 shows that

P(ℓ(x) ≥ t, ∀ x ∈ A) ≤ 2 · exp(−t · Cap(A)/2)

and this finishes the proof.

For a set A ⊆ Zd we write ℓ(A) for the total time spent in A by a simple random walk X, i.e.

ℓ(A) =
󰁛

x∈A
ℓ(x).

We also write for x ∈ Zd

g(x,A) :=
󰁛

y∈A
g(x, y).

Lemma 2.19. Let d ≥ 3 and X a simple random walk on Zd. There exist positive constants c
and C so that if A is a finite subset of Zd, then we have

P(ℓ(A) ≥ t) ≤ C exp

󰀣
−ct/ sup

x∈Zd

g(x,A)

󰀤
.

Proof. Let ϕ(x) = 1/ supx∈Zd g(x,A) for all x ∈ A. Then we have

g ∗ ϕ(x) =
󰁛

y∈A
g(x, y)ϕ(y) ≤ 1.

Thus we can apply Lemma 2.18 to obtain for θ ∈ (0, 1) that

E

󰀥
exp

󰀣
θ ·

󰁛

x

ϕ(x)ℓ(x)

󰀤󰀦
≤ 1

1− θ
.

It is immediate to see that

{ℓ(A) ≥ t} ⊆
󰀫
󰁛

x∈A
ϕ(x)ℓ(x) ≥ t/ sup

x∈Zd

g(x,A)

󰀬
.

Applying exponential Chernoff again we deduce

P

󰀣
󰁛

x∈A
ϕ(x)ℓ(x) ≥ t/ sup

x∈Zd

g(x,A)

󰀤
≲ exp

󰀣
−ct/ sup

x∈Zd

g(x,A)

󰀤

and this completes the proof.

Remark 2.20. Recall from Exercise 2.14 that there exists a universal constant C so that for all
sets A

sup
x∈Zd

g(x,A) ≤ C|A|2/d.

Plugging this bound into the bound in Lemma 2.19 shows that

P(ℓ(A) ≥ t) ≲ exp(−ct/|A|2/d).
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2.3 Intersections in higher dimensions

The question on large deviations on intersections of two independent random walks in dimensions
d ≥ 5 was first studied in 1994 by Khanin, Mazel, Shloshman and Sinai [5]. They proved that for
all ε > 0 and all t sufficiently large

exp(−t1−2/d+ε) ≤ P
󰀓
|R∞ ∩ 󰁨R∞| > t

󰀔
≤ exp(−t1−2/d−ε). (2.8)

In 2004, van den Berg, Bolthausen and den Hollander [10] showed that there exists a non-negative
rate function I such that for all b > 0

lim
t→∞

1

t1−2/d
logP

󰀓
|R⌊bt⌋ ∩ 󰁨R⌊bt⌋| > t

󰀔
= −I(b).

(In fact, they established it for Wiener sausages, and it was later adapted to the discrete setup by
Phetdrapat [8] in his PhD thesis.)

In 2020, Asselah and Schapira [2] finally managed to settle this open question by proving a large
deviations principle for the infinite time horizon.

Theorem 2.21 (Asselah and Schapira [2]). For d ≥ 5, the following limit exists and is positive

I∞ = lim
b→∞

I(b) = lim
t→∞

− 1

t1−2/d
logP

󰀓
|R∞ ∩ 󰁨R∞| > t

󰀔
.

In these notes we are going to establish the following result of Asselah and Schapira, which removes
the power ε from (2.8).

Theorem 2.22 (Asselah and Schapira [2]). Let d ≥ 5 and let R and 󰁨R be two independent ranges.
There exist positive constants c1 and c2 so that for all t > 0

e−c2t1−2/d ≤ P
󰀓
R∞ ∩ 󰁨R∞| > t

󰀔
≤ e−c1t1−2/d

.

Moreover, Asselah and Schapira are able to identify the strategy for the two walks in order to
achieve a large intersection. In particular, they show that given that the size of the intersection is
larger than t, a fraction close to t of them happen in a ball of radius t1/d.

They first prove a weaker result, namely that there exists a finite number of balls of radius t1/d,
where most of the intersections happen. To reduce to a single box, they needed to appeal to the
large deviations result for the finite time horizon problem.

2.3.1 Lower bound

We start by proving the lower bound of Theorem 2.22. This is the easier direction of this problem
as it entails finding a specific strategy for both walks to follow in order to achieve the required
event.

The main ingredient of the proof is the following result which gives a lower bound on the probability
that a walk visits a fraction of a set.

Proposition 2.23. Let X be a simple random walk in Zd with d ≥ 3 and let R∞ = X[0,∞) denote
its range. There exist positive constants ρ,κ and C so that for all r > 0 if Λ ⊆ B(0, r) satisfies
|Λ| > C, then

P(|R∞ ∩ Λ| ≥ ρ|Λ|) ≥ exp
󰀓
−κ · rd−2

󰀔
.
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We start by giving the proof the lower bound and then we proceed with the proof.

Proof of lower bound of Theorem 2.22. Let ρ < 1 and r > 0 be such that ρ2|B(0, r)| = t. We
then have

{|R∞ ∩ 󰁨R∞| ≥ t} ⊇ {|R∞ ∩B(0, r)| ≥ ρ|B(0, r)|} ∩ {| 󰁨R∞ ∩ (R∞ ∩B(0, r))| ≥ ρ · |R∞ ∩B(0, r)|}.

Using the independence between the two walks and applying Proposition 2.23 we obtain

P
󰀓
|R∞ ∩ 󰁨R∞| ≥ t

󰀔
≳ exp(−κ · rd−2) = exp(−κ′ · t1−2/d),

where κ and κ′ are positive constants. This completes the proof.

Let us first give a high level overview of the proof of Proposition 2.23. We consider the balls B(0, 5r)
and B(0, 10r). We are going to count the number of excursions the walk makes across the annulus
B(0, 10r) \ B(0, 5r). During each excursion, the walk has a probability 1/rd−2 of hitting a given
vertex of the ball B(0, r). The excursions are approximately independent, as there is enough time
for the walk to mix before starting the next one. So during Kr = K ·ρ ·rd−2 excursions, a fraction ρ
of the vertices of Λ will be covered. The probability that starting from ∂B(0, 10r) the random
walk hits ∂B(0, 5r) is a positive constant bounded away from 1 and 0, and hence the probability
of having at least Kr excursions is of order exp(−cKr) which is of the correct order. We now need
to make this argument rigorous.

Proof of Proposition 2.23. To this end we first define the successive hitting times of ∂B(0, 5r)
and ∂B(0, 10r). Set σ0 = 0 and define recursively for i ≥ 0

τi = inf{t ≥ σi : Xt /∈ B(0, 10r)} and

σi+1 = inf{t ≥ τi : Xt ∈ ∂B(0, 5r)}.

We let N be the total number of excursions the walk performs, i.e.

N = sup{k ≥ 0 : σk < ∞}.

Using the Green’s function asymptotics we get that there exists a positive constant c such that

P(N ≥ k) ≥ exp(−c · k). (2.9)

Set Kr = K · ρ · rd−2. Let G be the σ-algebra generated by the total number of excursions N and
the entrance and exit time of these excursions, i.e.

G = σ(N , Xσi , Xτi , i ≤ N ).

We now define Λ1 = Λ and inductively for i ≥ 1

R(i) = {Xσi , . . . , Xτi} and Λi+1 = Λ \ (∪j≤iR(j)).

Finally set
Yi = |R(i) ∩ Λi|1(σi < ∞).

By conditioning on G we deduce

P

󰀣
Kr󰁛

i=1

Yi > ρ|Λ|, N ≥ Kr

󰀤
= E

󰀥
1(N ≥ Kr) · P

󰀣
Kr󰁛

i=1

Yi > ρ|Λ|

󰀏󰀏󰀏󰀏󰀏 G
󰀤󰀦

. (2.10)
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Let Hi = σ(X[0,σi]) for every i. We now define

M =

N∧Kr󰁛

i=1

(Yi − E[Yi | Hi,G]).

Note that by the orthogonality of increments we get

E[M | G] = 0 and E
󰀅
M2

󰀏󰀏 G
󰀆
≤ 2

N∧Kr󰁛

i=1

E
󰀅
Y 2
i

󰀏󰀏 G
󰀆
.

Exercise 2.24. Using Harnack’s inequality show that for all i ≤ N we have for all x ∈ B(0, r)

P
󰀓
x ∈ R(i)

󰀏󰀏󰀏 Xσi , Xτi

󰀔
≳ P

󰀓
x ∈ R(i)

󰀏󰀏󰀏 Xσi

󰀔
.

We also have using the asymptotics of the Green’s function

P
󰀓
x ∈ R(i)

󰀏󰀏󰀏 Xσi = y
󰀔
= Py(Hx < ∞)− sup

z∈∂B(0,10r)
Pz(Hx < ∞)

=
g(x, y)

g(0)
− sup

z∈∂B(0,10r)

g(x, z)

g(0)

=
cd

󰀂x− y󰀂d−2
− sup

z∈∂B(0,10r)

cd
󰀂x− z󰀂d−2

+O(r1−d) ≍ 1

rd−2
.

Therefore, putting everything together we deduce that for a positive constant c

E[Yi | G,Hi] ≥
c

rd−2
· |Λi|,

and hence on the event {N ≥ Kr} and taking K = 4/c in the definition of Kr this gives

N∧Kr󰁛

i=1

E[Yi | G,Hi] ≥ Kr ·
c

rd−2
· |ΛKr | = 4ρ|ΛKr |.

Since |ΛKr | = |Λ|−
󰁓Kr−1

i=1 Yi we get on the event {N ≥ Kr} for ρ ≤ 1/2

P

󰀣
Kr󰁛

i=1

Yi ≤ ρ|Λ|

󰀏󰀏󰀏󰀏󰀏 G
󰀤

= P

󰀣
Kr󰁛

i=1

Yi ≤ ρ|Λ|, |ΛKr | ≥ |Λ|/2

󰀏󰀏󰀏󰀏󰀏 G
󰀤

≤ P(|M | ≥ ρ|Λ| | G)

≤
E
󰀅
M2

󰀏󰀏 G
󰀆

ρ2|Λ|2 ≤ 2

ρ2|Λ|2
Kr󰁛

i=1

E
󰀅
Y 2
i

󰀏󰀏 G
󰀆
.

(2.11)

Now it remains to bound this last sum of conditional expectations. For this we obtain

E
󰀅
Y 2
i

󰀏󰀏 Hi,G
󰀆
=

󰁛

(z,z′)∈Λi×Λi

P
󰀓
z ∈ R(i), z′ ∈ R(i)

󰀏󰀏󰀏 Xσi , Xτi

󰀔

≤ 2
󰁛

(z,z′)∈Λi×Λi

P
󰀓
z ∈ R(i), z′ ∈ R(i), Hz < Hz′

󰀏󰀏󰀏 Xσi , Xτi

󰀔
.

Applying the Harnack inequality again we get that up to a positive constant this last sum is equal
to

󰁛

(z,z′)∈Λi×Λi

PXσi
(Hz < Hz′ < ∞) ≤

󰁛

(z,z′)∈Λ×Λ

1

rd−2
· 1

󰀂z − z′󰀂d−2 + 1
≲ 1

rd−2
· |Λ|1+2/d.
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Plugging this bound into (2.11) we see that on the event {N ≥ Kr} we have

P

󰀣
Kr󰁛

i=1

Yi ≤ ρ|Λ|

󰀏󰀏󰀏󰀏󰀏 G
󰀤

≤ 2

ρ2|Λ|2 ·Kr ·
1

rd−2
· |Λ|1+2/d ≤ 2

cρ|Λ|1−2/d
≤ 1

2
,

by taking |Λ| > C with C a large constant so that c · ρ · C1−2/d ≥ 4. Plugging this bound back
into (2.10) and using also (2.9) with k = Kr completes the proof.

2.3.2 Upper bound

We devote this section to the proof of the upper bound of Theorem 2.22. Here we are working in
dimensions d ≥ 5.

We first start by reducing the problem to a finite time horizon, as we show that it is very unlikely
for intersections to occur at high enough times. More precisely, for every n ≥ 0 we define

An =

∞󰁛

i=n

∞󰁛

j=0

1(Xi = 󰁨Xj).

Using the local CLT we then obtain

E[An] =

∞󰁛

i=n

∞󰁛

j=0

P
󰀓
Xi = 󰁨Xj

󰀔
=

∞󰁛

k=n

(k + 1)pk(0, 0) ≍ n(4−d)/2.

By Markov’s inequality we get

P
󰀓
󰁨R∞ ∩R[n,∞) ∕= ∅

󰀔
≤ E[An] ≍ n(4−d)/2,

and hence taking n = exp(t1−2/d) gives the desired upper bound. So we can focus now on intersec-
tions between 󰁨R∞ and R[0, n] for this specific value of n.

The following proposition is the main ingredient in the proof of the upper bound.

Proposition 2.25. There exist positive constants c and C so that if n = exp(t1−2/d), then

P

󰀣
sup
x∈Zd

g(x,Rn) > Ct2/d

󰀤
≤ C exp(−ct1−2/d).

Proof of upper bound of Theorem 2.22. As we explained above it suffices to study the num-
ber of intersections between 󰁨R∞ and Rn. By Proposition 2.25 we obtain

P
󰀓
| 󰁨R∞ ∩Rn| > t

󰀔
≤ P

󰀣
| 󰁨R∞ ∩Rn| > t, sup

x∈Zd

g(x,Rn) ≤ Ct2/d

󰀤
+ C exp(−ct1−2/d).

Applying Lemma 2.19 to the first probability appearing on the right-hand side above we get

P

󰀣
| 󰁨R∞ ∩Rn| > t, sup

x∈Zd

g(x,Rn) ≤ Ct2/d

󰀤

≤ E

󰀥
exp(−ct/ sup

x∈Zd

g(x,Rn))1( sup
x∈Zd

g(x,Rn) ≤ Ct2/d)

󰀦
≤ exp(−ct1−2/d)

and this concludes the proof.
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The main idea behind the proof of the upper bound of Theorem 2.22, and more precisely the proof
of Proposition 2.25, is that intersections will happen in the high density regions of the range of
each walk, i.e. the regions that are visited a lot by the walk. We are going to perform a multiscale
analysis of the high density region and then we will bound the Green’s function separately for the
high and the low density regions. In particular, we will show that the Green’s function for the low
density regions can be bounded deterministically, while for the high density we will first prove that
with high probability the sizes of these regions are not too large, and then on that we will be able
to bound the Green’s function, thus proving Proposition 2.25.

For r > 0 and ρ ∈ (0, 1) we now let

Rn(ρ, r) = {x ∈ Rn : |Rn ∩B(x, r)| > ρ|B(x, r)|},

i.e. the set Rn(ρ, r) contains the points on the range for which a fraction ρ of the ball around them
is covered by the range.

The following proposition controls the size of the set of high density regions.

Proposition 2.26. There exist positive constants C,C0 and κ such that the following holds. For
any r ≥ 1, n ∈ N and any ρ > 0 satisfying

ρ · rd−2 ≥ C0 · log n, (2.12)

then for any L ≥ 1 we have

P(|Rn(ρ, r)| > L) ≤ C exp
󰀓
−κ · ρ2/d · L1−2/d

󰀔
.

Claim 2.27. There exists a positive constant C so that the following holds. Let A be any finite set
and r ≥ 1 such that

|A ∩B(x, r)| ≤ ρ|B(x, r)|, ∀ x ∈ A.

Then for all R ≥ r we have for all x ∈ Zd

|A ∩B(x,R)| ≤ C · ρ · |B(x,R)|

Proof. To see this, we start by choosing x1 ∈ A ∩ B(x,R) and then inductively for any k ≥ 0
choose xk+1 ∈ A∩B(x,R)\(∪j≤kB(xj , r)) until this set becomes empty. Let n be the total number
of xi’s picked this way. Then the balls B(xi, r/2) for i ≤ n are disjoint, and hence

Rd ≍ |B(x,R)| ≥
n󰁛

i=1

|B(xi, r/2)| = n|B(0, r/2)| ≍ n · rd,

and hence this gives that n ≍ Rd/rd. Therefore, we obtain

|A ∩B(x,R)| ≤
n󰁛

i=1

|A ∩B(xi, r)| ≤ n · ρ · |B(0, r)| ≤ C · ρ · |B(0, R)|,

thus establishing the claim.

Lemma 2.28. There exists a positive constant C so that the following holds. Let A be any finite
set and r ≥ 1 such that

|A ∩B(x, r)| ≤ ρ|B(x, r)|, ∀ x ∈ A.

Then for any x ∈ Zd we have

g(x,A ∩B(x, r)c) ≤ C · ρ1−2/d · |A|2/d.
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Proof. Let Sk = B(x, r(k+ 1)) \B(x, rk) for k ≥ 1. Then we have using integration by parts and
Claim 2.27

g(x,A ∩B(x, r)c) =
󰁛

k≥1

g(x,Sk ∩A) ≤
󰁛

k≥1

|A ∩ Sk|
(kr)d−2

=
󰁛

k≥1

|A ∩B(x, r(k + 1))|− |A ∩B(x, rk)|
(kr)d−2

≍ 1

rd−2
·
󰁛

k≥1

|A ∩B(x, rk)|
kd−1

≤ 1

rd−2
·
󰁛

k≥1

min(ρ(rk)d, |A|)
kd−1

≍ ρ1−2/d · |A|2/d

and this completes the proof.

We now give the proof of Proposition 2.25 and then proceed with the proof of Proposition 2.26.

Proof of Proposition 2.25. We define a sequence of densities ρi = 2−i and radii ri for every i ≥ 0
by setting

ρi · rd−2
i = C0 log n, (2.13)

where C0 is the constant of Proposition 2.26. We now define the sets Λi as the regions where the
density in the balls of radius ri is at least ρi for the first time at level i. First recall for all i ≥ 0

Rn(ρi, ri) = {x ∈ Rn : |Rn ∩B(x, ri)| > ρi · |B(x, ri)|}

and note that Rn(ρ0, r0) = ∅. We now set

Λi = Rn(ρi, ri) \ (∪j≤i−1Rn(ρj , rj)) and Λ∗
i = Rn \ (∪0≤j≤i−1Rn(ρj , rj)).

Let Sk = B(x, rk) \B(x, rk−1) for every k ≥ 1. We decompose g(x,Rn) as follows

g(x,Rn) = g(x,B(x, r0) ∩Rn) +

∞󰁛

k=1

g(x,Rn ∩ Sk).

For the first term on the right-hand side above we have

g(x,B(x, r0) ∩Rn) ≤ g(x,B(x, r0)) ≲ r20 ≲ (log n)2/(d−2) ≲ t2/d.

Now for every k ≥ 1 we have

g(x,Rn ∩ Sk) =

k󰁛

i=1

g(x,Sk ∩ Λi) + g(x,Sk ∩ Λ∗
k+1).

We control the Green’s function of the low density region as follows

g(x,Sk ∩ Λ∗
k+1) ≲

|Sk ∩ Λ∗
k+1|

rd−2
k−1

≲ ρkr
d
k

rd−2
k−1

≲ log n

rd−4
k

,

where for the second inequality we used Claim 2.27 and for the final one we used (2.13). Thus
taking the sum over all k ≥ 1 we get

󰁛

k≥1

g(x,Sk ∩ Λ∗
k+1) ≲

log n

rd−4
0

≍ log n

(log n)(d−4)/(d−2)
= (log n)2/(d−2) ≲ t2/d.
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Therefore, it remains to treat the high density region. First of all we see that since Rn ≤ n+ 1 we
get that Λi = ∅ for all i such that ρir

d
i > n+ 1, which using (2.13) gives that i ≳ log n.

We have

∞󰁛

k=1

k󰁛

i=1

g(x,Sk ∩ Λi) =

∞󰁛

i=1

󰁛

k≥i

g(x,Sk ∩ Λi) =

∞󰁛

i=1

g(x,Λi ∩B(x, ri−1)
c).

We define the good event to be

E = {|Λi| ≤ ρ
−2/(d−2)
i · t, ∀ i ≥ 1}.

Applying Proposition 2.26 together with the fact that for i ≳ log n we have |Λi| = ∅, it follows that

P(Ec) ≤
C logn󰁛

i=1

exp
󰀓
−κ · ρ2/di · (ρ−2/(d−2)

i t)1−2/d
󰀔
≲ exp

󰀓
−κ · t1−2/d

󰀔
. (2.14)

By definition, the set Λi contains all the points of the range that are not of density ρj for all j < i.
Therefore, we see that on the event E using also Lemma 2.28 we have for all i ≥ 1

g(x,Λi ∩B(x, ri−1)
c) ≲ ρ

1−2/d
i−1 · |Λi|2/d ≤ Cρ

1−2/d
i−1 · ρ−4/(d(d−2))

i · t2/d = ρ
(d−4)/(d−2)
i · t2/d.

Taking the sum over all i completes the proof.

For a set A we write B(A, r) = ∪x∈AB(x, r).

Lemma 2.29. There exists a positive constant c so that the following holds. Let C be a set of points
in Zd at distance at least 2r from each other. Then for all t > 0 we have

P(ℓ(B(x, r)) ≥ t, ∀ x ∈ C) ≤ exp
󰀓
−c · t · Cap(∪x∈CB(x, r))/rd

󰀔
.

Proof. Let ϕ be the equilibrium measure of ∪x∈CB(x, r). Define 󰁨ϕ as follows

󰁨ϕ(y) = c1
rd

󰁛

z∈B(x,r)

ϕ(z), ∀ y ∈ B(x, r),

where c1 is a positive constant to be determined in order to make g ∗ 󰁨ϕ ≤ 1. Let x0 ∈ Zd. We set
A(x0) = {x ∈ C : 󰀂x− x0󰀂 ≥ 2r}. We then have

󰁛

x∈C

󰁛

y∈B(x,r)

g(x0, y)󰁨ϕ(y) =
c1
rd

·
󰁛

x∈C

󰁛

y∈B(x,r)

g(x0, y)
󰁛

z∈B(x,r)

ϕ(z).

We split the sum over x ∈ A(x0) and the complement. For x /∈ A(x0), we then get that g(x0, y) ≲
g(x0, z) for any other z ∈ ∂B(x, r). So we obtain

󰁛

x∈A(x0)

󰁛

y∈B(x,r)

g(x0, y)
󰁛

z∈B(x,r)

ϕ(z) ≲ rd ·
󰁛

x∈A(x0)

󰁛

z∈B(x,r)

g(x0, z)ϕ(z) ≲ rd

by the last exit decomposition formula (recall g ∗ ϕ ≤ 1). For the sum over A(x0)
c we get

󰁛

x∈A(x0)c

󰁛

y∈B(x,r)

g(x0, y)
󰁛

z∈B(x,r)

ϕ(z) ≤ Cap(B(0, r)) ·
󰁛

z∈B(x0,3r)

g(x0, z) ≲ rd−2 · r2 = rd.
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So there exists c1 > 0 so that g ∗ 󰁨ϕ ≤ 1. Notice that
󰁛

x∈C
󰁨ϕ(x) =

󰁛

x∈C

󰁛

y∈B(x,r)

c1
rd

· ϕ(y) = c1
rd

·
󰁛

z∈∪x∈CB(x,r)

ϕ(z) =
c1
rd

· Cap(∪x∈CB(x, r)).

Applying Lemma 2.18 and exponential Chernoff we finally deduce

P(ℓ(B(x, r)) ≥ t, ∀ x ∈ C) ≤ P

󰀣
󰁛

x∈C
󰁨ϕ(x)ℓ(B(x, r)) ≥ t

󰁛

x∈C
󰁨ϕ(x)

󰀤
≲ exp(−c · t · Cap(∪x∈CB(x, r))/rd)

and this concludes the proof.

A final step towards proving Proposition 2.26 is the following bound on the sizes of regions with
controlled density from above and below.

For r > 0 and ρ ∈ (0, 1) we define

R∗
n(ρ, r) = {x ∈ Rn : ρ|B(x, r)| < |Rn ∩B(x, r)| ≤ 2ρ|B(x, r)|}.

These are the points of the range that the balls of radius r around them are visited a lot by the
walk. The important step in the proof of the theorem is the following lemma on large deviations
of the size of this set.

Lemma 2.30. There exist positive constants C,C0 and κ so that for all r ≥ 1, n ∈ N and ρ > 0
satisfying

ρ · rd−2 ≥ C0 · log n,
we have for all L ≥ 1

P(|R∗
n(ρ, r)| > L) ≤ C exp

󰀓
−κρ2/d · L1−2/d

󰀔
.

Proof. Let N be the number of points in R∗
n(ρ, r) that are at distance at least 2r from each other.

We start by showing that on the event {|R∗
n(ρ, r)| > L}, we must have N ≥ ⌊L/(2Cρ|B(0, 2r)|)⌋ =:

n0, where C is a positive constant to be determined. Indeed, first pick x1 ∈ R∗
n(ρ, r). Once we have

picked x1, . . . , xn we pick xn+1 from the set R∗
n(ρ, r) \ (∪j≤nB(xj , 2r)). Then using Claim 2.27 we

get

|R∗
n(ρ, r) ∩ (∪N

i=1B(xi, 2r))| ≤
N󰁛

i=1

|Rn ∩B(xi, 2r)| ≤ C · 2ρ · |B(0, 2r)| ·N,

where C is a positive constant. So we see that taking N as above this upper bound is smaller
than L/2. This shows that

{|R∗
n(ρ, r)| > L} ⊆ {∃ C 2r-separated with |C| ≥ n0 and |Rn ∩B(x, r)| ≥ ρ|B(x, r)|, ∀ x ∈ C}

The total number of possible sets C with |C| = ℓ is upper bounded by (2n)d·ℓ. Using this, Lemma 2.29
and (2.7) we get

P(|R∗
n(ρ, r)| > L) ≤

󰁛

ℓ≥n0

(2n)d·ℓ · exp(−κ · ρ · (rdℓ)1−2/d) =
󰁛

ℓ≥n0

exp(d · ℓ · log(2n)− κρ · (rdℓ)1−2/d).

We see that the entropic term that comes from counting all possible subsets dominates in the
exponential above. So we would like to reduce the total number of sets C that we are considering
in order to match the two terms appearing in the exponential above. To do this, we will use the
following result that shows that every set has a subset of the same capacity up to constants and
which is of the same order as its volume.
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Theorem 2.31. ([1, Theorem 1.1]) Suppose d ≥ 3. There exists a positive constant c so that the
following holds. Let A be a finite subset of Zd which is 2r separated for r ≥ 1, i.e. any two distinct
points of A are at distance at least 2r apart. Then there exists a subset U of A with the property
that

Cap(∪x∈UB(x, r)) ≥ c · rd−2 · |U | ≥ c2 · Cap(∪x∈AB(x, r)).

We defer the proof of this to end of the proof of the proposition.

Let C = {x1, . . . , xn0}. Applying the above theorem we get that there exists a subset U of C such
that

|U | · rd−2 ≍ Cap(B(U, r)) ≍ Cap(B(C, r)).

Using that Cap(A) ≥ |A|1−2/d we get

|U | ≳ |B(C, r)|1−2/d · r2−d ≳
󰀕
L

ρ

󰀖1−2/d

· r2−d.

For every ℓ > 0 there exist at most (2n)d·ℓ possible subsets of [−n, n]d of size ℓ. So by a union
bound we have

P(|Rn(ρ, r)| > L)

≤
∞󰁛

ℓ=(L/ρ)1−2/d·r2−d

P
󰀓
∃ U : |U | = ℓ, |U |rd−2 ≍ Cap(B(U, r)), |Rn ∩B(x, r)| ≥ ρ|B(x, r)|, ∀ x ∈ U

󰀔

≤
∞󰁛

ℓ=(L/ρ)1−2/d·r2−d

exp(c · ℓ · log n) · exp(−κ · ρ · ℓ · rd−2),

where for the final inequality we used Lemma 2.29. By taking the constant C0 sufficiently large so
that ρ · rd−2 ≥ C0 · log n, we see that there exists a positive constant κ such that the sum above is
upper bounded by

∞󰁛

ℓ=(L/ρ)1−2/d·r2−d

exp(−κ · ρ · ℓ · rd−2) ≲ exp(−κ · ρ2/d · L1−2/d)

and this completes the proof.

We are now ready to give the

Proof of Proposition 2.26. Clearly we have that

Rn(ρ, r) =
󰁞

i≥0

R∗
n(2

iρ, r).

Let α =
󰁓∞

i=0 2
−i/(d−2). By a union bound we get

P(|Rn(ρ, r)| > L) ≤
∞󰁛

i=0

P
󰀕
|R∗

n(2
iρ, r)| > α · L

2i/(d−2)

󰀖

≤
󰁛

i≥0

exp

󰀣
−κ · (2iρ)2/d ·

󰀕
L

2i/(d−2)

󰀖1−2/d
󰀤

≲ exp
󰀓
−κ′ · ρ2/d · L1−2/d

󰀔

and this completes the proof.
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Proof of Theorem 2.31. We first give the proof in the case where r = 1. We show that every C
has a subset U satisfying

Cap(U) ≥ c · |U | ≥ c2Cap(C).

For every x ∈ A, let (Xx
n) be a collection of independent simple random walks in Zd with Xx

0 = x

for every x ∈ A. For every x ∈ A we write 󰁨Hx
A for the first return time to A of the walk Xx. We

now define
U = {x ∈ A : 󰁨Hx

A = ∞}.

We then immediately get that E[|U|] = Cap(A) and Var(|U|) ≤ Cap(A) as |U| is the sum of
independent Bernoulli random variables. By Chebyshev’s inequality we then obtain

P
󰀕
|U| ≤ E[|U|]

2

󰀖
≤ 4

Cap(A)
and P(|U| ≥ 2E[|U|]) ≤ 1

Cap(A)
.

Assuming that Cap(A) > 16, since otherwise the statement holds true, we get that

P
󰀕
2Cap(A) ≥ |U| ≥ 1

2
Cap(A)

󰀖
≥ 2

3
.

It remains to show that the capacity of U is of the same order as the size of U with high enough
probability. To do this we are going to use the variational characterisation of capacity. Let µ be
the uniform measure on U . We then deduce

Cap(U) ≥ |U|2󰁓
x,y∈U g(x, y)

. (2.15)

We next upper bound the expectation of the denominator above. By the last exit decomposition
formula we have

E

󰀵

󰀷
󰁛

x,y∈U
g(x, y)

󰀶

󰀸 ≤
󰁛

x∈A
P
󰀓
󰁨Hx
A = ∞

󰀔
g(0) +

󰁛

x,y∈A
P
󰀓
󰁨Hx
A = ∞

󰀔
P
󰀓
󰁨Hy
A = ∞

󰀔
g(x, y)

= g(0)Cap(A) + Cap(A) = (g(0) + 1)Cap(A).

Using Markov’s inequality we get

P

󰀳

󰁃
󰁛

x,y∈U
g(x, y) ≤ 4(g(0) + 1)Cap(A)

󰀴

󰁄 ≥ 3

4
.

Therefore, combining all of the above we deduce

P

󰀳

󰁃2Cap(A) ≥ |U| ≥ 1

2
Cap(A),

󰁛

x,y∈U
g(x, y) ≤ 4(g(0) + 1)Cap(A)

󰀴

󰁄 ≥ 5

12
.

By (2.15) we see that on the event appearing in the probability above we get that

Cap(U) ≥ |U|2
4(g(0) + 1)Cap(A)

≥ c · |U| ≥ c2 · Cap(A),

where c is a positive constant, and hence, this proves that

P
󰀃
Cap(U) ≥ c · |U| ≥ c2 · Cap(A)

󰀄
≥ 5

12
.
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This concludes the proof in the case when r = 1.

For r ≥ 1 we proceed by defining for every x ∈ A an independent Bernoulli random variable Yx
with parameter

c

rd−2
·

󰁛

y∈∂B(x,r)

Py

󰀓
󰁨HB(A,r) = ∞

󰀔
,

where c is a constant to ensure that the quantity above is smaller than 1 and we write B(A, r) =
∪x∈AB(x, r). We next define the set U as

U = {x : Yx = 1}.

We have for the expectation and the variance

E[|B(U , r)|] = |B(0, r)| ·
󰁛

x∈A

c

rd−2

󰁛

y∈∂B(A,r)

Py

󰀓
󰁨HB(A,r) = ∞

󰀔
≍ r2 · Cap(B(A, r)).

For the variance as above we get

Var(|B(U , r)|) ≤ |B(0, r)| · E[|B(U , r)|] .

So with Chebyshev as above we get

P
󰀃
|B(U , r)| ≍ r2 · Cap(B(A, r))

󰀄
≥ 3

4
.

We finally need to control the sum of the Green’s function as before. By taking the uniform measure
on ∂B(U , r) we need to control

1

(|U| · |∂B(0, r)|)2
󰁛

x,x′∈U

󰁛

y∈∂B(x,r)

󰁛

y′∈∂B(x′,r)

g(y − y′).

For x = x′ we get 󰁛

x∈U

󰁛

y∈∂B(x,r)

󰁛

y′∈∂B(x,r)

g(y − y′) ≲ rd · |U|.

For x ∕= x′ we take expectation of the sum involving the Green’s function and obtain

E

󰀵

󰀷
󰁛

x ∕=x′∈U

󰁛

y∈∂B(x,r)

󰁛

y′∈∂B(x′,r)

g(y − y′)

󰀶

󰀸 ≤ r2(d−1) ·
󰁛

x ∕=x′∈A
P(Yx = 1)P(Yx′ = 1) g(x− x′)

= rd ·
󰁛

x ∕=x′∈A

󰁛

z∈∂B(x,r)

Pz

󰀓
󰁨HB(A,r) = ∞

󰀔
P(Yx′ = 1) g(x′ − z)

≲ rd ·
󰁛

x′∈A
P(Yx′ = 1) = rd · E[|U|] ,

where in the last inequality we used the last exit decomposition formula. The proof can be com-
pleted in the same way as before using Chebyshev’s inequality.
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3 Random interlacements

The goal of this section is to define random interlacements on Zd with d ≥ 3. First we will use them
in order to prove a very strong coupling result with simple random walk. In the next section we
will use them in order to sample uniform spanning forests using the interlacements Aldous Broder
algorithm introduced by Tom Hutchcroft.

We will write everything in the case of Zd but one can generalise to any transient graph as well.
For n ≤ m we define W(n,m) to be the set of graph homomorphisms from {n, n+ 1, . . . ,m} to G
that are transient, i.e. they have the property that every vertex is visited a finite number of times.
We also define

W =
󰁞

(W(n,m) : −∞ ≤ n ≤ m ≤ ∞).

For every path w ∈ W(n,m) and a finite set K ⊆ Zd we write

HK(w) = inf{n ≤ i ≤ m : w(i) ∈ K}

for the first time that w hits K and

LK(w) = sup{n ≤ i ≤ m : w(i) ∈ K}

for the last time w is in K. We write wK = w|[HK(w),LK(w)]. We write WK(n,m) (resp. WK) for
the paths in W(n,m) (resp. W) that visit K.

We equip W with the topology generated by open sets of the form

{w ∈ W : wK = w′
K},

for K a finite subset of Zd and w′ ∈ WK . We also endow W with the Borel σ-algebra B(W)
generated by this topology.

Finally we define the time shift θk : W → W by assigning to every w ∈ W the path θk(w)(i) =
w(i + k) for all i and with this we can now also define an equivalence relation ∼ by saying that
w1 ∼ w2 if there exists k such that θk(w1) = w2. Lastly, define W∗ = W/ ∼ to be the quotient

space and π : W → W∗ for the projection mapping. We define the quotient σ-algebra 󰁩W∗ on W∗

by including every set A if and only if π−1(A) ∈ B(W).

For every finite set K ⊆ Zd we define a measure QK as follows

QK({w ∈ W : w|(−∞,0] ∈ A,w(0) = x and w|[0,∞) ∈ B}) = Px

󰀓
X ∈ A, 󰁨HK = ∞

󰀔
Px(X ∈ B) ,

where A and B are Borel subsets of ∪m≥n≥0W(n,m) and X is a simple random walk. Note that
we defined QK only on a π-system, but since the σ-algebra is generated by such sets, this uniquely
determines QK .

From the definition of QK we see that QK/Cap(K) is a probability measure on bi-infinite trajec-
tories that hit K at time 0 and (Xn)n≥0 and (X−n)n≥0 are independent conditionally on X0 which
is distributed according to the normalised equilibrium measure. Moreover, the backward path has
the distribution of a simple random walk conditioned on avoiding K and the forward path is an
unconditioned simple random walk.

Theorem 3.1 (Sznitman and Teixeira). There exists a unique σ-finite measure ν on W∗ such that
for every set A ⊆ W∗ in the quotient σ-algebra of W∗ and every finite K ⊆ V we have

ν(A ∩W∗
K) = QK(π−1(A)).
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Sketch of proof. To prove this result, we first show that such a measure is unique if it exists. To
prove existence, we show that the measures QK are consistent, in the sense that if K ⊆ K ′ ⊆ Zd

are both finite subsets, then for any A ⊆ W∗
K ⊆ W∗

K′ we have

QK′(π−1(A)) = QK(π−1(A)).

Once this is established, then we can define ν by writing

ν(A) =

∞󰁛

n=1

QEn(π
−1(A ∩ (W∗

En
\W∗

En−1
))),

where (En) is an increasing sequence of finite subsets of Zd with ∪En = Zd.

For a full proof we refer the reader to [4, Theorem 6.2].
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