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Quadratic twists

Let f be a primitive modular form of weight κ and level N and
suppose that f is a Hecke eigenform. The L-function associated
with f is given by

L(s, f ) =
∑
n

λf (n)

ns
,

for Re s > 1, and can be analytically continued to the entire
complex plane.
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Quadratic twists

Let d be a fundamental discriminant, and χd(·) =
(
d
·
)

denote the
primitive quadratic character with conductor |d |. Then f ⊗ χd is a
Hecke eigenform, with L-function given by

L(s, f ⊗ χd) =
∑
n

λf (n)χd(n)

ns
(1)

for Re s > 1.
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x2 + y 2 + z2 = n

n is represented by x2 + y2 + z2 if it is not of the form 4a(8b − 1).
When representations exist, one may ask whether the points
1√
n

(x , y , z) equidistribute on the unit sphere.

• Linnik resolved this using ergodic methods subject to some an
condition that n is a quadratic reside modulo some prime.

• Iwaniec resolved this without the assumption by bounding
Fourier coefficients of half weight integer modular forms.

• By Waldspurger’s formula, one may relate the Fourier
coefficient of a primitive half integer weight cusp form g to
L-values of a quadratic twist of a modular form f .

|ρg (|D|)|2 � L(1/2, f ⊗ χD),

for D fundamental discriminant.
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Quadratic twists of elliptic curves
We call a natural number n congruent if n occurs as the area of a
right angle triangle with sides of rational length. This gives a
system

a2 + b2 = c2, and
ab

2
= n.

A change of variables x = n(a + c)/b and y = 2n2(a + c)/b2 gives

y2 = x3 − n2x ,

and n is congruent if and only if there are solutions for the above
in rational x , y with y 6= 0. A change of variables
(x , y)→ (nx , n2y) gives the equivalent form

ny2 = x3 − x .

These are the quadratic twists of

y2 = x3 − x .
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More generally when an elliptic curve E is given by
y2 = x3 + ax + b, the quadratic twist Ed is given by

dy2 = x3 + ax + b.

For L(s,E ) the L-function of E , L(s,Ed) = L(s,E ⊗ χd) (in the
sense previously introduced).
The rational points on Ed is an abelian group of finite rank r . The
Birch and Swinnerton-Dyer predicts that r is the same as the order
of vanishing of L(s,Ed) at the critical point.
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Moments

For simplicity, assume f is full level and restrict attention to
fundamental discriminants of the form 8d where d is odd and
squarefree. We let

∑* denote a sum over squarefree integers. It is
of high interest to understand moments of the form

M(k) :=
∑*

0<8d<X
(d ,2)=1

L(1/2, f ⊗ χ8d)k . (2)
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Moments

Keating and Snaith conjectured that

M(k) ∼ C (k , f )X (logX )
k(k−1)

2 ,

for an explicit constant C (k , f ). This conjecture is analogous to
conjectures for moments of other families.

• The conjecture is known for the first moment k = 1 by
Iwaniec’s work.

• Based on knowledge of the twisted first moment, Radziwill

and Soundararajan proved that M(k)� X (logX )
k(k−1)

2 for
0 ≤ k ≤ 1.
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The second moment

For k = 2,

• The work of Heath-Brown implies that M(2)� X 1+ε.

• The method of Soundararajan gives M(2)� X (logX )1+ε,
and refinement by Harper gives M(2)� X (logX ), both
conditionally on GRH.

• Based on similar ideas applied to bounding shifted moments,
Soundararajan and Young proved the conjectured asymptotic
for M(2) assuming GRH.
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The second moment

Theorem ∑*

0<8d<X
(d ,2)=1

L(1/2, f ⊗ χ8d)2 ∼ Cf X logX ,

where Cf is some explicit constant depending on f .

If we include a smooth weight in the sum over d above, the result
can be proven with an error term of quality O(X (logX )1/2+ε) and
improved to O(X (logX )ε) with a little effort.
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Moments of quadratic Dirichlet L-functions

Let

M(k) =
∑*

0<8d<X
(d ,2)=1

L(1/2, χ8d)k .

• The first and second moments were computed by Jutila, and
the third moment by Soundararajan.

• Refinements with improved error terms: on the first and third
moments by Young, the second moment by Sono, and a
further refinement of the third moment by Diaconu and
Whitehead explicating a power saving secondary term.

• The fourth moment was computed recently assuming GRH by
Shen, following the approach of Soundararajan and Young.
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Moments of quadratic Dirichlet L-functions

Let

M(k) =
∑*

0<8d<X
(d ,2)=1

L(1/2, χ8d)k .

• Florea gave the expected asymptotic for the analogous fourth
moment over the function field Fq[x ] (where the Riemann
hypothesis is known) with the base field Fq fixed and genus
going to infinity.

• Our techniques should extend to give the asymptotic forM(4)
unconditionally. This is work in progress by Shen and Stucky.
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Moments of quadratic twists and rank

Let md be the order of vanishing of L(s, f ⊗ χ8d) at s = 1/2, and
let

R(X ) =
∑*

0<8d<X
(d ,2)=1

md .

• Goldfeld proved that R(X )� X conditionally on GRH.

• Trivially, R(X )� X logX , while the work of Perelli and
Pomykala gives R(X ) = o(X logX ).

• Our methods may yield R(X )� X log logX proceeding along
the same lines.

• Related: Mallesham Kummari is adapting these methods to
derive asymptotics for moments of derivatives of the quadratic
twist of modular L functions.
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Reduction to Dirichlet polynomials

After an application of the approximate functional equation, we
morally need to understand sums like

∑*

m�X

∣∣∣∣∣∑
n�X

λf (n)√
n

(m
n

)∣∣∣∣∣
2

. (3)

Quadratic twists



Background and motivation
Outline of Proof

Concluding remarks

Poisson and functional equation

We have two basic tools. Roughly,

• Poisson summation changes a sum like
∑

m�M

(
m

n1n2

)
into a

dual sum of length n1n2/M.

• Functional equation changes
∑

n�N
λf (n)√

n

(
m
n

)
into a similar

dual sum of length |m|2/N.

General rule of thumb is that we prefer shorter sums.
Neither tool seems to help us understand

∑*

m�X

∣∣∣∣∣∑
n�X

λf (n)√
n

(m
n

)∣∣∣∣∣
2

.
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Truncation

The functional equation and Poisson summation are useful in the
easier range ∑*

m�X

∣∣∣∣∣∣
∑

n�X/(logA X )

λf (n)√
n

(m
n

)∣∣∣∣∣∣
2

, (4)

for some large A > 0. Thus, the challenge is to bound sums of the
form

S =
∑*

m�X

∣∣∣∣∣∑
n�N

λf (n)√
n

(m
n

)∣∣∣∣∣
2

, (5)

when N is close to X .
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Large sieve type bound I

We will show that

∑*

m�X

∣∣∣∣∣∑
n�N

λf (n)√
n

(m
n

)∣∣∣∣∣
2

� X , (6)

which is best possible up to the implied constant. Assuming this,
dyadic summation for X

logA X
≤ N � X gives the bound

∑*

m�X

∣∣∣∣∣∣
∑

X/(logA X )�n�X

λf (n)√
n

(m
n

)∣∣∣∣∣∣
2

� X (logX )ε.

This reduces the problem to considering (4).
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Large sieve type bound II
The main challenge is to prove

∑*

m�X

∣∣∣∣∣∑
n�X

a(n)
(m
n

)∣∣∣∣∣
2

� X , (7)

which is best possible up to the implied constant.
Heath-Brown’s work implies that

∑*

m�X

∣∣∣∣∣∑
n�X

a(n)
(m
n

)∣∣∣∣∣
2

� X · X ε, (8)

and the work of Soundararajan and Young implicitly prove that

S � X (logX )1/2+ε

conditionally on GRH.
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A sketch of a sketch
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Inflation I

For a prime p �
√
L

S =
∑*

m�X

∣∣∣∣∣∑
n�X

a(n)
(m
n

)∣∣∣∣∣
2

=
∑*

m�X

∣∣∣∣∣∣∣∣
∑
n�X
p-n

a(n)

(
mp2

n

)
+
∑
n�X
p|n

a(n)
(m
n

)∣∣∣∣∣∣∣∣
2

.
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Inflation II
Let P(L) �

√
L

log L be the number of primes in the interval

[
√
L, 2
√
L] and sum over all p ∈ [

√
L, 2
√
L] to see that

P(L)S �
∑

√
L≤p≤2

√
L

∑*

m�X

∣∣∣∣∣∑
n�X

a(n)

(
mp2

n

)∣∣∣∣∣
2

+ other

≤
∑

m�4XL

∣∣∣∣∣∑
n�X

a(n)
(m
n

)∣∣∣∣∣
2

+ other.
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Remarks

• We have embedded our original sum over m into a longer
sum, so that it is now advantageous to execute Poisson over
m and begin the iterative process.

• Note that discarding the squarefree condition on m can be
disastrous for arbitrary coefficients a(n). We therefore expect

to crucially use the special properties of a(n) = λf (n)√
n

.

• We have used that
(
p2

n

)
tends to be trivial, and that the

representation of m by m′p2 is unique for m′ squarefree.
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Poisson

Opening up the square and applying Poisson summation roughly
gives that

∑
m�XL

∣∣∣∣∣∑
n�X

a(n)
(m
n

)∣∣∣∣∣
2

= Cf XL +
XL

2

∑
n1,n2�X

λf (n1)λf (n2)
√
n1n2n1n2

∑
k 6=0

k�X 2/XL�X/L

Gk(n1n2).

Generically, Gk(n1n2) is χk(n1n2)
√
n1n2 when n1n2 is squarefree.
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Functional equation
The sum over k is essentially restricted to k � X 2/XL � X/L, so
we need to bound

XL

2X

∑
k�X/L

∑
n1,n2�X

λf (n1)λf (n2)
√
n1n2

Gk(n1n2)
√
n1n2

. (9)

Now we replace Gk(n1n2) by χk(n1n2)
√
n1n2 so we hope to

instead study a quantity like

L
∑*

k�X/L

∣∣∣∣∣∑
n�X

λf (n)χk(n)√
n

∣∣∣∣∣
2

. (10)

Since the conductor k � X/L has been reduced, it now makes
sense to apply the functional equation of L(s, f ⊗ χk) to transform
the sum over n to a sum of length X/L2.
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Structural comment
We expect

L
∑*

k�X/L

∣∣∣∣∣∣
∑

n�X/L2

λf (n)χk(n)√
n

∣∣∣∣∣∣
2

= CX
∑

n1,n2�X/L2
n1n2=�

λf (n1)λf (n2)
√
n1n2

+ small,

for some constant C .

• The ”diagonal” contribution when n1n2 is a perfect square
dominates.

• However, generically Gk(n1n2) = 0 when n1n2 is not
squarefree, so that the same ”diagonal” contribution does not
exist in the prior sum.

• Careful analysis of the factors at prime squares and higher
powers is crucial.

Quadratic twists



Background and motivation
Outline of Proof

Concluding remarks

“Many” prime squares
Our calculations suggest that

P(L)S ≤ CLX

for some constant C . Since P(L) �
√
L/ log L,

S ≤ L2/3X .

Using this as our induction hypothesis,

P(L)S ≤ C1XL + C2L(L2/3X/L) = (C1 + C2L
−1/3)XL,

and so

S ≤ L2/3X
C1 + C2L

−1/3

L1/7
.

So the number of primes in the interval [
√
L, 2
√
L] being large

serves to control the loss of constant factors.
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Open problems

•
∑*

d

L(1/2, f ⊗ χd)L(1/2, g ⊗ χd) ∼

•
∑*

d

L(1/2, f ⊗ χd)2(Short Poly)2 ∼

We have pretended that Poisson summation is useless unless
the dual sum is shorter. But we have seen that the structure
of the dual sum is different.
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