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What is a Variational Autoencoder ?

I A VAE is a latent variable model like Hidden Markov Models
(HMM) and Gaussian Mixture Models (GMM).

I Introduced by Kingma in 2013, it was used with success on
image analysis toy examples.

I Not commonly employed by statisticians.
I There have been lots of publications that update and improve

the implementation of VAEs.
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What is an autoencoder ?

I An AutoEncoder (AE) is an unsupervised learning model that
learns how to encode (p) and decode (q) data simultaneously.

I The code is usually of lower dimensions, say M << D. Thus,
the autoencoder compresses and decompresses
high-dimensional data.

I Notations : x are D-dimensional observations, z is the
M-dimensional code, p is the encoding function for x
(p(x) = z) and q is the decoding function (q(z) = x)).
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Autoencoder

I There are multiple possible functions p and q and multiple
ways to optimize for those.

I Specific case: Assume p and q are linear combinations.
I and assume we minimize the quadratic reconstruction error :

1
n
∑n

i=1 ||xi − x̃i||2, where x̃ = q(p(x)).
I Then, the solutions to this problem are the principal

components.
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Toward a probabilistic autoencoder

I Can we build a probabilistic equivalent ?
I Assume some distributions for both variables:

1. p(z) = N (0, I)
2. p(x |z) = N (W z + µ, σ2I)

I This model is called probabilistic principal component analysis
(pPCA, Tipping & Bishop 1999).

I The marginal distribution of x is Normal and the parameters
W , µ and σ are obtained by maximum likelihood.

I We can analytically compute p(z|x).
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Toward a probabilistic autoencoder

I We now have a probabilistic encoder p(z|x)
I and a probabilistic decoder p(x|z).
I The probabilistic formulation offers multiple advantages:

1. The EM algorithm is fast.
2. Help manages missing values.
3. Allows for a Bayesian formulation.
4. Can model conditional distribution allowing for classification.
5. Allows generating new observations using ancestral sampling.
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Toward a variational autoencoder

I VAE is a generalization of pPCA.
I We want to allow for more complex p’s and q’s.
I A modern flexible function comes in mind: a Neural Network

(NN).
I Made of the sequential application of parametric linear

combinations and non-linear nonparametric transformations.
I Easy to optimize with back-propagation of the gradient (chain

rule of derivatives).
I Is considered to be a universal function approximator.
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Simple NN: graphical representation
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Simple NN: functional representation

w = f (B1x) (1)

where B1 is a coefficient matrix and f a non-linear activation
function. For instance: f (a) = 1

1+e−a . Assume the response is a
binary variable, then:

ỹ = logit (B2f (B1x)) (2)

We can compute the gradients of an error function w.r.t. the
parameters (B1 and B2) by back-propagation.
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Toward a variational autoencoder

I Supposons:
1. pθ(z) = N (0, I)
2. pθ(x|z) = N (µx , σ

2
x I) where [µx , σx ] = NN(z), say θ(z).

I The parameters of the emission distribution (pθ(x|z)) are the
output of NNs taking z as input.

I Assume θ is the set of parameters of p that requires
estimation. θ = {µx (z), σx (z)}



Variational Autoencoders
A formal definition of VAEs

Toward a variational autoencoder

I This allows us to represent and capture complicated marginal
of x without having to increase the dimension of z.

I Unfortunately, pθ(z|x) is analytically intractable.
I To learn the parameters, we rely on variational Bayes. Assume

qϕ(z|x) is a variational approximation of pθ(z|x).
I Assume qϕ(z|x) = N(µz , σ

2
z I), then ϕ = {µz(x), σz(x)} is a

NN as well. The parameters of the variational distribution
(qϕ(z|x)) are the output of NNs taking x as input.
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ELBO

I It is impossible to directly maximize log pθ(x) or to use EM
(pθ(z|x) being intractable).

I Thus the common solution is to optimize a lower bound of
log pθ(x), the ELBO (Evidence Lower BOund).
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ELBO

log p(x) = Eq(z|x)[log p(x)]

= Eqϕ(z|x)

[
log
(p(x , z)
p(z |x)

)]
= Eq(z|x)

[
log
(p(x , z)q(z |x)
q(z |x)p(z |x)

)]
= Eq(z|x)

[
log
(p(x , z)
q(z |x)

)]
− Eq(z|x)

[
log
(p(z |x)
q(z |x)

)]
= L(qϕ, pθ) + KL(qϕ||pθ).

(3)
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ELBO

L(qϕ, pθ) = Eqϕ(z|x) [log pθ(z) + log pθ(x|z)− log qϕ(z|x)] (4)

I The gap between log p(x) and L(qϕ, pθ) is KL(qϕ||pθ)
I Since it is impossible to analytically compute the expectation

we estimate it by Monte Carlo.
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VAE : Algorithm

Algorithm : Training VAE(x)
1) Input x into the NN ϕ to retrieve µz(x) and σz(x)
2) Sample z from qϕ(x)(z|x)
3) Input the sample z in the NN θ to retrieve

µx (z) and σx (z)
4) Evaluate log pθ(z) + log pθ(x|z)− log qϕ(z|x)
5) Maximise the ELBO Monte Carlo estimate

w.r.t the parameters of ϕ and θ using any
gradient-based algorithm

Repeat 1-5 until convergence.
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VAE: graphical representation

z

x

(a) Generative model
p(x, z) = p(z)p(x|z).

z

x

(b) Inference model. Given x
we have q(z|x).

Figure: Graphical representation of both components of a VAE
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VAE: practical uses

I Compression, encoding, storage and latent space analysis.
I Generation of new observation using ancestral sampling:

z ∼ pθ(z) then x ∼ pθ(x|z).
I Classification and regression. The model can be adapted for

supervised tasks.
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Variational autoencoder
Survival analysis application
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Introduction

I We received a data set from the Children’s Oncology Group.
I It consists of 1 712 patients. We have patient symptoms as

well as the treatment and the response.
I The response is a time-to-event variable that is right-censored

for the majority of patients.
I We want a system that recommends treatment based on

patient symptoms.
I Work published in the 2018 NeurIPS ML4H workshop et in

Applied Artificial Intelligence.
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Our model: SAVAE (Survival Analysis VAE)

z
x

y
t

(a) Generative model. Assume
p(x , y , t, z) =
p(z)p(x |z)p(t|x)p(y |t, z).

z
x

y

(b) Inference model. Given x and y
we have q(z|x , y).

Figure: Graphical representation where y is the response, t is the
treatment, x are the characteristics and symptoms and z is the latent
variable which represents the true health status of the patient.
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SAVAE

ELBO = Eqϕ

[
log pθ(x, t, y , z)

qϕ(z|x, y)

]
= Eqϕ [log pθ(x, t, y , z)− log qϕ(z|x, y)]

= Eqϕ [log pθ(z) + log pθ(x|z) + log pθ(t|x) + log pθ(y |t, z)
− log qϕ(z|x, y)].

(5)

where

log pθ(y |t, z) = δ log fθ(y |t, z) + (1− δ) log Sθ(y |t, z), (6)

with δ = 1 if y is observed et 0 if y is censored.
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SAVAE
We select the distributions.

pθ(x|z) =
Dx∏
j=1

pθ(xj |z) (7)

p(ti |x) = Ber(π̂i ) pour i ∈ {1, 2}. (8)

p(y |t, z) = Weibull(λ,K ) (9)

θ = f2(B2f1(B1z)) (10)
[π1, π2] = f4(B4f3(B3x)) (11)

[λ,K ] = f6(B6f5(B5[t, z])) (12)
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SAVAE

q(z|x, y) = N (µ, σ2I) (13)

[µ, σ] = f8(B8f7(B7[x , y ]). (14)
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SAVAE

Finally, we obtain p(y |t, x) by importance sampling:

p(y |t, x) ≈
L∑

l=1
wlpθ(y |t, zl ) (15)

where:

wl = pθ(x|zl )∑L
k=1 pθ(x|zk)

(16)
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Results

I Performed better than Cox regression according to the Brier
score.

I Provides a completely defined a Weibull survival distribution
for every possible patient and treatment combination.

I This allows the physician to select the treatment in different
ways.
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Variational autoencoder
Image analysis application
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Introduction

I I love imagine analysis and I wanted to explore the topic
during my Ph.D.

I Contributions: a new database and a related analysis
I Paper under review at the moment with Springer Nature:

Compute Science.
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Motivation
Inspired by the popular MNIST data set.

Figure: Samples of images from the MNIST data set.
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Motivation
When fitting a VAE on those images (with a 2-dimensional latent
space), we see that digits with similar styles are clustered together.

Figure: Latent representation of the MNIST data set.
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Motivation

I Since writing styles depend on the writer, can we predict
writers ?

I MNIST is a too simple data set:
1. Contains images of low resolution.
2. Contains only the digit as response.
3. Easy to achieve high accuracy.

I Thus, we decided to collect our own data set:
1. Can we determine the digit writers ?
2. Can we predict writer characteristics such as age and gender ?
3. Finally, can we generate new images where we control the digit

and its style ?
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Data gathering

I Our goal: 200-300 students at UofT
I We booked multiple classrooms over a few days.
I For March 2020...
I Settled on mail instead, ended up with 97 participants.
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Data gathering

Figure: Examples of the collected data sheets.
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Data: general information

I 97 writers, 14 occurrences for all 10 digits for a total of 13
580 images in high resolution (500 x 500).

I We gathered: the digit, writer ID, age, biological gender,
height,native language, handiness, education level and main
writing medium.

I Publicly available on my website.
I Available in multiple formats.
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Data: a sample

Figure: Samples of 45 images.
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Questions specific to our data set

1. Can we predict the digit (easy task), the ID (much more
difficult) or other characteristics ?

2. What is the impact of the image resolution?

3. How does semi-supervised prediction works ?

4. Can we do controlled image generation ?
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Results

I For (1) and (2) our new data set provides new opportunity
compared to what MNIST offers.

I But let’s focus on the VAE applications: (3) and (4).
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Semi-supervised learning

I Can we incorporate unlabelled data (Su) to a data set with
labelled observations (Sl) to improve the prediction accuracy.

I Our data set is different of MNIST, but similar enough for
these experiments.

I We can check if our predictions are more accurate when
integrating unlabelled MNIST data.

I We use the VAE M2 (Kingma 2014)
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VAE: M2

zy

x

(a) Generative component.
Assumes
pθ(x, z, y) = pθ(z)pθ(y)pθ(x|z, y).

zy

x

(b) Inference network. Given x and
y we get qϕ(z|x , y). If y is missing,
we can estimate it with qϕ(y|x).

Figure: Graphical representation of M2.
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VAE: M2

log pθ(x, y) ≥ Eq(z|x,y) [log pθ(z) + pθ(y) + pθ(x|z , y)− log qϕ(z|x , y)]
= L(x , y)

(17)

log pθ(x) ≥ Eq(z,y|x) [log pθ(z) + pθ(y) + pθ(x|z , y)− log qϕ(z, y|x)]
=
∑

y
[qϕ(y|x)(L(x , y))] +H(qϕ(y|x))

= U(x)
(18)

J =
∑
Sl

L(x , y) +
∑
Su

U(x) (19)
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VAE: M2

However, what is strange about using the ELBO here is that we
train qϕ(y|x) (here a CNN) only using unlabelled data. The
solution proposed (Kingma 2014) is to modify the objective
function :

J α = J + αESl [log qϕ(y|x)] (20)

Notes: These heuristic modifications are made over and over again
in the ML literature, I’d like to establish more formal definitions for
these.
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Possible explanation: to be explored

J α = αJ + ESl [log qϕ(y|x)] (21)

When α = 0 we basically train a supervised model.
It seems like the unsupervised VAE machinerie act as regularizer.
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Semi-supervised classification: results

CNN M2
Mean Std. Mean Std.

Digit 0.9399 0.0143 0.9542 0.0060
ID 0.3473 0.0136 0.4174 0.0099

Table: Prediction accuracy for two classification problems.
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Image generation

I A VAE is a generative model. Since p(x , z) is fully defined
and estimated, we can sample from it and generate new
observations x .

I In this case, it means generating new images.
I With a simple VAE it means z ∼ p(z) then x ∼ p(x |z).
I This process generates images of a random digit and random

style.
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Controlled generation

I Can we decide on the digit or the style ? Yes, using a VAE
designed for classification, such as M2 defined earlier.

I In this case: we fix y then z ∼ p(z) and x ∼ p(x |z , y).
I Our Assumption: If there exist a signal between the variable

and the image, then we can use it to control the content of
the image.
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Controlled generation: Results

Figure: Examples of controlled image generation.
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Controlled generation: Results

Figure: Examples of controlled image generation.
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Controlled generation: Results

Figure: Examples of controlled image generation.
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Controlled generation: Results

Figure: Examples of controlled image generation.
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Controlled generation: Results
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Moment Estimators GAp (MEGA)

I A new metric to compare or regularized latent variable
generative models.

I Project I have been working on after I noticed some issues
with implementing the theoretical VAE.

I Paper just submitted to Journal of Machine Learning Research



Variational Autoencoders
Moment Estimators GAp (MEGA)

Assessing an unsupervised model

I In supervised learning we learn p(y |x) and we can check our
results against unobserved data points (x , y).

I In supervised learning, there are no labels y and we simply try
to fit p(x). It is much more complicated to assess the quality
of the fit.

I Parametric models are fitted by maximum likelihood so we
cannot use the likelihood to compare these models.
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Assessing an unsupervised model

I We propose a new metric based on moments that is suitable
to compare any latent variable generative models, such as
GMMs and VAEs.

I It is fast to compute and provides a good sanity check.
I We also demonstrate how to use such metric to regularize

such models. However, it can no longer be used for model
comparison.
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MEGA: Key concept
I We compare two estimators of the second moment of p(x);

one comes from the data, the other from the trained model.
I Using the Law of Total Variance:

Varx (x) = Ez [Varx (x|z)] + Varz [Ex (x|z)], (22)

and notice the second term is

Varz [Ex (x|z)] = Ez [Ex (x|z)2]− (Ez [Ex (x|z)])2 (23)
= Ez [Ex (x|z)2]− (Ex [x])2. (24)

We combine and reorganize both equations

Varx (x) + (Ex [x])2 = Ez [Varx (x|z)] + Ez [Ex (x|z)2]. (25)

Both sides are the equal to the second moment of x.
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MEGA: Moment estimators
Data estimator:

Varx (x) + (Ex [x])2 ≈
∑n

i=1(xi − x̄)T (xi − x̄)
n − 1 + x̄T x̄ := DE (26)

Forward model estimator:

Ez [Varx (x|z) + Ex (x|z)2] =
∫

z

[
Varx (x|z) + Ex (x|z)2

]
p(z)dz

≈ 1
m

m∑
i=1

[Varx (x|z = zi )

+ Ex (x|z = zi )T Ex (x|z = zi )] := FME
(27)
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MEGA: Compute the gap

I The gap between those two moment estimators is DE-FME.
I The bigger this gap is the further the model is from the

observed second moment.
I Those are 2-dimensional matrices.
I We are using matrix norms to make the gap more digestible.
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MEGA: Frobenius norm
I Schatten q-norm is a well-studied family of matrix norms with:

|M|q = (
∑

ij
|Mij |q)(1/q). (28)

I When q = 2, this is a special case called the Frobenius norm:

|M|2 = |M|F = (
∑

ij
|Mij |2)(1/2) =

√
Tr(MTM). (29)

I Thus the proposed metric is:

2MEGA-F = |DE-FME|F . (30)
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MEGA for regularization

I Because our metric favours simple model, such as a single
Gaussian. It can be used for as a regularizer.

I For GMMs, it behaves similarly to the AIC or the BIC.
I We can also use it to regularize VAEs
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MEGA for VAE regularization
VAE

L(qϕ, pθ) = Eqϕ(z|x) [log pθ(z) + log pθ(x|z)− log qϕ(z|x)] (31)
= Eqϕ(z|x) [log pθ(x|z)]− KL(q(z|x)|p(z)) (32)

β-VAE

Eq[ln p(x|z)]
Reconstruction error

− βKL(q(z|x)|p(z))
Regularization forq(z|x)

(33)

MEGA-β-VAE

Eq[ln p(x|z)]
Reconstruction error

− βKL(q(z|x)|p(z))
Regularization forq(z|x)

− α(2MEGA-F)
Regularization forp(x)

(34)
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MEGA for regularization: results

(a) Model train without MEGA (b) Model train with MEGA

Figure: A sample of 64 images from pθ(x‖z) = N(µ(z), σ(z)) where
z ∼ N(0, 1).
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MEGA for regularization: results

(a) Model train without MEGA (b) Model train with MEGA

Figure: The 64 sampled means of the images: µ(z) where z ∼ N(0, 1).
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MEGA for regularization: results

(a) Model train without MEGA (b) Model train with MEGA

Figure: The 64 sampled standard deviation for each pixel of the images:
σ(z) where z ∼ N(0, 1). For those images, the whiter the pixel is the
larger the standard deviation of that pixel is.
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I would love to answer your questions.
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