

Kummer theory for number fields

Antonella Perucca

j.w. Bryan Advocaat, Chi Wa (Clifford) Chan, Christophe Debry, Fritz Hörmann, Olli Järviniemi, Antigona Pajaziti, Flavio Perissinotto, Pietro Sgobba, Sebastiano Tronto

- 1. [Introduction](#page-2-0)
- 2. [Divisibility parameters](#page-7-0)

3. [Cyclotomic-Kummer extensions](#page-18-0)

4. [Further results](#page-22-0)

[Introduction](#page-2-0)

Kummer theory

Let K be a field, and n a positive integer. Suppose that

- *n* is coprime to $char(K)$
- $\bullet \ \zeta_n \in K$.

Fundamental Theorem

For an extension of K , the following are equivalent:

- \bullet being abelian with exponent dividing *n*
- being generated by *n*-th roots of elements of K .

Such extensions are called Kummer extensions.

They correspond to the subgroups of $K^{\times}/K^{\times n}$.

The correspondence (for finite extensions) also gives:

Galois group \simeq Group of "radicals-to-be".

Example: Cyclic Galois group \leftrightarrow Just one radical

Let $K=\mathbb{Q}(\zeta_{3^4})$ and consider the extension $K(5^{1/3^4})/K.$

• The subfields are

$$
K \qquad K(5^{1/3}) \qquad K(5^{1/3^2}) \qquad K(5^{1/3^3}) \qquad K(5^{1/3^4})
$$

• The group

$$
\langle 5, K^{\times 3^4} \rangle \bmod K^{\times 3^4}
$$

is cyclic of order 3⁴ [because 5 is not a third power in K^{\times}].

• The subfields correspond to the subgroups of order

$$
1 \qquad 3 \qquad 3^2 \qquad 3^3 \qquad 3^4
$$

 \bullet The 3^4 -th radicals-to-be are

$$
5^{3^4} \qquad 5^{3^3} \qquad 5^{3^2} \qquad 5^3 \qquad 5
$$

Problem

Consider a finitely generated subgroup G of K^{\times} .

Kummer extension

If $\zeta_n \in K$,

$$
[K(\sqrt[n]{G}) : K] = \#G/K^{\times n}
$$

Gal $(K(\sqrt[n]{G})/K) \simeq G/K^{\times n}$

Cyclotomic-Kummer extension

If $char(K) \nmid n$,

$$
[K(\sqrt[n]{G}) : K(\zeta_n)] = \#G/K(\zeta_n)^{\times n} = \cdots
$$

Gal(K(\sqrt[n]{G})/K(\zeta_n)) \simeq G/K(\zeta_n)^{\times n} \simeq \cdots

From now on, K is a number field.

Cyclotomic-Kummer extensions

- Studying them is a natural question of algebraic number theory.
- They appear when counting reductions with specific properties (on the order or index of the reductions of algebraic numbers).

Artin's Primitive Root Conjecture

Under GRH, the primes $\mathfrak p$ of K for which $(G \text{ mod } \mathfrak p) = k_{\mathfrak p}^\times$ have density

$$
\sum_{n\geq 1}\frac{\mu(n)}{[\mathsf{K}(\sqrt[n]{G}):\mathsf{K}]}
$$

[Divisibility parameters](#page-7-0)

This section is based on my works

with Christophe Debry, Reductions of algebraic integers, Journal of Number Theory (2016).

with Pietro Sgobba and Sebastiano Tronto, Addendum to: Reductions of algebraic integers, Journal of Number Theory (2020).

Parameters for ℓ -divisibility over K

Let $\alpha \in K^{\times}$, not a root of unity. Fix some prime number ℓ .

Divisibility parameters (over K) Integers (d, h) , where

$$
\alpha = \beta^{\ell^d} \zeta_{\ell^h}
$$

with $\beta \in K^{\times}$ and d maximal.

Example

2-divisibility parameters for $-81 \in \mathbb{Q}$ are $(2,1)$ because

$$
-81 = 3^{2^2} \cdot \underbrace{(-1)}_{2^1}
$$

Let $G < K^\times$ be finitely generated and torsion-free. Write

$$
G = \langle \alpha_1, \dots, \alpha_r \rangle
$$

$$
\alpha_i = \beta_i^{\ell^{d_i}} \zeta_{\ell^{h_i}}
$$

Parameters

 Λ The parameters (d_i, h_i) depend on the basis. © We can use any basis that "shows all divisibility", namely for which

$$
\sum_{i=1}^r d_i
$$
 is maximal

Example

3-divisibility parameters for $\langle 12, 18 \rangle \in \mathbb{Q}$ are $(1, 0)$; $(0, 0)$ because

 $\langle 12, 18 \rangle = \langle 6^3, 18 \rangle$

Good ℓ -basis over K

$$
G = \langle \alpha_1, \dots, \alpha_r \rangle
$$

$$
\alpha_i = \beta_i^{\ell^{d_i}} \zeta_{\ell^{h_i}}
$$

- $\bullet\ \sum d_i$ is maximal if and only if β_1,\ldots,β_r are strongly ℓ -independent
- Testing for independence allows us (if not independent) to replace a generator and get a basis that shows more divisibility. This is an explicit finite procedure to construct a good ℓ -basis.

Strongly ℓ -independent

$$
\prod_{i=1}^r \alpha_i^{x_i} \in \langle K^{\times \ell}, \mu_K \rangle \qquad \Rightarrow \qquad \forall i \quad \ell \mid x_i
$$

Strongly ℓ -independent

$$
\prod_{i=1}^r \alpha_i^{x_i} \in \langle K^{\times \ell}, \mu_K \rangle \qquad \Rightarrow \qquad \forall i \quad \ell \mid x_i
$$

For $r > 1$, this is more than "each α_i strongly ℓ -indivisible".

Strongly ℓ -indivisible

$$
\alpha^x \in \langle K^{\times \ell}, \mu_K \rangle \qquad \Rightarrow \qquad \ell \mid x
$$

Example

Over $\mathbb Q$: 12 and 3 are not $\pm \square$, so they are each strongly 2-indivisible. However, they are not strongly 2-independent because $12 \cdot 3 = 6^2$.

The d-parameters are unique up to reordering. The associated *h*-parameters are not unique.

Dilemma

We will present a parametric formula that also depends on the h-parameters, but we say that they are not unique. Do we have to worry?

Figure : Area = Basis x Height / 2

The *d*-parameters are unique up to reordering. The associated *h*-parameters are not unique.

Theorem

We could make the *h*-parameters unique, by imposing the following conditions (which mean that, whenever possible, we must set the h -parameters to 0):

- For every $1 \leq i \leq r$ we have $h_i = 0$ or $h_i > z d_i$.
- If $1 \leq i < j \leq r$ and $h_i, h_j > 0$ hold, then we have $h_i > h_j$ and $d_i + h_i < d_j + h_j$.
- If $1 \leq i < j \leq r$ and $d_i = d_i$ hold, then $h_i = 0$.

To study $K(\sqrt[2^n]{G})$ for $n\geq 2$, we need divisibility parameters over $K(\zeta_4).$

Example

Over \mathbb{Q} : 2 has parameters (0,0) because $2 \neq \pm \square$. Over $\mathbb{O}(\zeta_4)$: 2 has parameters (1, 2) because $2/\zeta_4 = \square$.

Theorem

In K there is at most one element that causes trouble, namely

$$
\zeta_{2^s}+\zeta_{2^s}+2
$$

where $s \geq 2$ is maximal such that $K \cap \mathbb{Q}(\zeta_{2^\infty}) = \mathbb{Q}(\zeta_{2^s} + \zeta_{2^s})$.

The d-parameters over $K(\zeta_4)$ are the same over K up to one parameter that could increase by 1. The h -parameters can change and we have an explicit case distinction.

Schinzel's Theorem on Abelian radical extensions

If α is strongly ℓ -indivisible, $K(\zeta_{\ell^n}, \sqrt[\ell]{\alpha})$ is abelian only if $\zeta_{\ell^n} \in K.$

Idea (for ℓ^n): Cyclotomic-Kummer extensions are non-abelian unless they are cyclotomic or Kummer.

Important consequence

If ℓ is odd, or if $\zeta_4 \in K$, the divisibility parameters over K are the same as the divisibility parameters over $\mathcal{K}(\zeta_{\ell^n}).$

[Cyclotomic-Kummer extensions](#page-18-0)

Let K be a number fields, ℓ a prime number, $G < K^\times$ finitely generated and torsion-free. Consider the cyclotomic-Kummer extensions

 $K(\sqrt[\ell^n]{G})$

We want to pin down the Kummer extensions $K(\sqrt[\ell^n]{G})/K(\zeta_{\ell^n}).$

USE THE DIVISIBILITY PARAMETERS OVER K (in fact, over $K(\zeta_4)$ for $\ell = 2$ and $n > 1$)

- You have everything you need.
- Divisibility parameters to rule them all.

Theorem [Debry and P., Journal of Number Theory 2016]

• For ℓ odd or $\zeta_4 \in K$, the degree of $K(\sqrt[\ell^n]{G})/K(\zeta_{\ell^n})$ is ℓ to the power

$$
\sum_i \max(n-d_i, 0) + \max(\max_i (h_i + \min(n, d_i) - n'), 0)
$$

where $n' = \max(n, v_{\ell} \# \mu_{K(\zeta_{\ell})}).$

• For $\ell = 2$, $\zeta_4 \notin K$, $n \geq 2$: we use divisibility parameters over $K(\zeta_4)$.

Work in progress:

[Advocaat, Chan, Pajaziti, Perissinotto and P., 2023]

The Galois group of $K(\sqrt[\ell^n]{G})/K(\zeta_{\ell^n})$ has a group structure that is determined by the divisibility parameters. There is an explicit formula.

[Further results](#page-22-0)

The degree of $K(\sqrt[n]{\sqrt{2}})$ $G)/K(\zeta_n)$

Example

 $\zeta_2 \in \mathbb{Q}$, $\sqrt{5} \in \mathbb{Q}(\zeta_5)$

Theorem

There is some constant C such that, to compute the *failure of maximality* First is some constant C such that, to compute the *landing of the*
for the degree of $K(\sqrt[n]{G})/K(\zeta_n)$, we may replace *n* by gcd(*n*, *C*).

Computability of all degrees

Q (Tronto's GitHub); Multiquadratic fields; Quartic cyclic fields; Number fields without quadratic subfields.

Compute generators for the Kummer extensions of K inside $K(\zeta_{\infty})$.

References: Many papers j.w. Hörmann, Perissinotto, Sgobba, Tronto.

Procedure

- Compute the degree of $K(\zeta_{\ell^E}, \sqrt[\ell^e]{G})$ for all ℓ and $E \geq e$.
- Compute $K(\zeta_{\ell^{\epsilon}}, \sqrt[\ell^{\epsilon}]{G}) \cap K(\zeta_{\infty})$ for $\zeta_{\ell^{\epsilon}} \in K$.

One can compute finitely many elements whose radicals generate all Kummer extensions of K inside $K(\zeta_{\infty})$. Then it suffices to check whether equivalent radicals are contained in G.

Entanglement groups

Introduced by H.W. Lenstra, developed by W.J. Palenstijn.

Theorem [P. Sgobba Tronto, Manuscripta Math. 2021] The degree of $K(\sqrt[n]{G})$ over K is

$$
\frac{\# \langle K^\times, \sqrt[n]{G} \rangle / K^\times}{\#E_n} \quad \cdot \prod_{p | n, \zeta_p \notin K} \frac{p-1}{p}
$$

where E_n is the finite abelian group

$$
\frac{\mathrm{Aut}_{K^\times}\langle K^\times, \sqrt[n]{G}\rangle}{\mathrm{Gal}(K(\sqrt[n]{G})/K)}
$$

There is a constant C such that

$$
\#E_n=\#E_{\gcd(n,C)}
$$

Example

For every $\alpha \in \mathbb{Q}^{\times}$, we have $\sqrt{\alpha} \in \mathbb{Q}(\zeta_{\infty})$.

Theorem [Järviniemi P., Research in Number Theory 2022] If $K\neq \mathbb{Q}$, then there exists a sequence $(\alpha_i)_{i\in \mathbb{Z}_{>0}}$ with $\alpha_i\in K^\times$ for all $i > 0$ which are algebraic integers and not units, whose norms $N(\alpha_i)$ are pairwise coprime, and such that for all positive integers r, n we have

$$
[\mathsf{K}(\zeta_{\infty},\alpha_1^{1/n},\ldots,\alpha_r^{1/n}):\mathsf{K}(\zeta_{\infty})]=n^r.
$$

Thank you!