

Kummer theory for number fields

Antonella Perucca

j.w. Bryan Advocaat, Chi Wa (Clifford) Chan, Christophe Debry, Fritz Hörmann, Olli Järviniemi, Antigona Pajaziti, Flavio Perissinotto, Pietro Sgobba, Sebastiano Tronto

- 1. Introduction
- 2. Divisibility parameters
- 3. Cyclotomic-Kummer extensions

4. Further results

Introduction

Kummer theory

Let K be a field, and n a positive integer. Suppose that

- *n* is coprime to char(*K*)
- $\zeta_n \in K$.

Fundamental Theorem

For an extension of K, the following are equivalent:

- being abelian with exponent dividing n
- being generated by *n*-th roots of elements of *K*.

Such extensions are called Kummer extensions.

They correspond to the subgroups of $K^{\times}/K^{\times n}$.

The correspondence (for finite extensions) also gives:

Galois group \simeq Group of "radicals-to-be" .

Example: Cyclic Galois group \leftrightarrow Just one radical

Let $K = \mathbb{Q}(\zeta_{3^4})$ and consider the extension $K(5^{1/3^4})/K$.

• The subfields are

$$K = K(5^{1/3}) = K(5^{1/3^2}) = K(5^{1/3^3}) = K(5^{1/3^4})$$

• The group

$$\langle 5, K^{\times 3^4} \rangle \mod K^{\times 3^4}$$

is cyclic of order 3^4 [because 5 is not a third power in K^{\times}].

• The subfields correspond to the subgroups of order

1 3
$$3^2$$
 3^3 3^4

• The 3⁴-th radicals-to-be are

$$5^{3^4}$$
 5^{3^3} 5^{3^2} 5^3 5

Problem

Consider a finitely generated subgroup G of K^{\times} .

Kummer extension

If $\zeta_n \in K$,

$$[K(\sqrt[n]{G}):K] = \#G/K^{\times n}$$
$$Gal(K(\sqrt[n]{G})/K) \simeq G/K^{\times n}$$

Cyclotomic-Kummer extension

If $char(K) \nmid n$,

$$[K(\sqrt[n]{G}): K(\zeta_n)] = \#G/K(\zeta_n)^{\times n} = \cdots$$
$$Gal(K(\sqrt[n]{G})/K(\zeta_n)) \simeq G/K(\zeta_n)^{\times n} \simeq \cdots$$

From now on, K is a number field.

Cyclotomic-Kummer extensions

- Studying them is a natural question of algebraic number theory.
- They appear when counting reductions with specific properties (on the order or index of the reductions of algebraic numbers).

Artin's Primitive Root Conjecture

Under GRH, the primes \mathfrak{p} of K for which $(G \mod \mathfrak{p}) = k_{\mathfrak{p}}^{\times}$ have density

$$\sum_{n\geq 1}\frac{\mu(n)}{[K(\sqrt[n]{G}):K]}$$

Divisibility parameters

This section is based on my works

with Christophe Debry, *Reductions of algebraic integers*, Journal of Number Theory (2016).

with Pietro Sgobba and Sebastiano Tronto, *Addendum to: Reductions of algebraic integers*, Journal of Number Theory (2020).

Parameters for ℓ -divisibility over K

Let $\alpha \in K^{\times}$, not a root of unity. Fix some prime number ℓ .

Divisibility parameters (over K) Integers (d, h), where

$$\alpha = \beta^{\ell^d} \zeta_{\ell^h}$$

with $\beta \in K^{\times}$ and *d* maximal.

Example

2-divisibility parameters for $-81 \in \mathbb{Q}$ are (2,1) because

$$-81 = 3^{2^2} \cdot \underbrace{(-1)}_{2^1}$$

Parameters for ℓ -divisibility over K

Let $G < K^{\times}$ be finitely generated and torsion-free. Write

$$G = \langle \alpha_1, \dots, \alpha_r \rangle$$
$$\alpha_i = \beta_i^{\ell^{d_i}} \zeta_{\ell^{h_i}}$$

Parameters

 \wedge The parameters (d_i, h_i) depend on the basis. \odot We can use any basis that "shows all divisibility", namely for which

$$\sum_{i=1}^r d_i \qquad \text{is maximal}$$

Example

3-divisibility parameters for $\langle 12, 18 \rangle \in \mathbb{Q}$ are (1, 0); (0, 0) because

 $\langle 12,18\rangle = \langle 6^3,18\rangle$

Good ℓ -basis over K

$$G = \langle \alpha_1, \dots, \alpha_r \rangle$$
$$\alpha_i = \beta_i^{\ell^{d_i}} \zeta_{\ell^{h_i}}$$

- $\sum d_i$ is maximal if and only if β_1, \ldots, β_r are strongly ℓ -independent
- Testing for independence allows us (if not independent) to replace a generator and get a basis that shows more divisibility. This is an explicit finite procedure to construct a good *l*-basis.

Strongly *l*-independent

$$\prod_{i=1}^{r} \alpha_{i}^{\mathbf{x}_{i}} \in \langle \mathbf{K}^{\times \ell}, \mu_{\mathbf{K}} \rangle \qquad \Rightarrow \qquad \forall i \quad \ell \mid \mathbf{x}_{i}$$

Strongly *l*-independent

$$\prod_{i=1}^{r} \alpha_{i}^{x_{i}} \in \langle K^{\times \ell}, \mu_{K} \rangle \qquad \Rightarrow \qquad \forall i \quad \ell \mid x_{i}$$

For r > 1, this is more than "each α_i strongly ℓ -indivisible".

Strongly *l*-indivisible

$$\alpha^{\mathsf{x}} \in \langle \mathsf{K}^{\times \ell}, \mu_{\mathsf{K}} \rangle \qquad \Rightarrow \qquad \ell \mid \mathsf{x}$$

Example

Over \mathbb{Q} : 12 and 3 are not $\pm \Box$, so they are each strongly 2-indivisible. However, they are not strongly 2-independent because $12 \cdot 3 = 6^2$. The d-parameters are unique up to reordering. The associated h-parameters are not unique.

Dilemma

We will present a parametric formula that also depends on the *h*-parameters, but we say that they are not unique. Do we have to worry?

Figure : Area = Basis × Height / 2

The d-parameters are unique up to reordering. The associated h-parameters are not unique.

Theorem

We could make the *h*-parameters unique, by imposing the following conditions (which mean that, whenever possible, we must set the *h*-parameters to 0):

- For every $1 \leq i \leq r$ we have $h_i = 0$ or $h_i > z d_i$.
- If $1 \leq i < j \leq r$ and $h_i, h_j > 0$ hold, then we have $h_i > h_j$ and $d_i + h_i < d_j + h_j$.
- If $1 \leq i < j \leq r$ and $d_i = d_j$ hold, then $h_j = 0$.

To study $K(\sqrt[2^n]{G})$ for $n \ge 2$, we need divisibility parameters over $K(\zeta_4)$.

Example

Over \mathbb{Q} : 2 has parameters (0,0) because $2 \neq \pm \square$. Over $\mathbb{Q}(\zeta_4)$: 2 has parameters (1,2) because $2/\zeta_4 = \square$.

Theorem

In K there is at most one element that causes trouble, namely

$$\zeta_{2^s} + \zeta_{2^s} + 2$$

where $s \ge 2$ is maximal such that $K \cap \mathbb{Q}(\zeta_{2^{\infty}}) = \mathbb{Q}(\zeta_{2^{s}} + \zeta_{2^{s}})$.

The *d*-parameters over $K(\zeta_4)$ are the same over K up to one parameter that could increase by 1. The *h*-parameters can change and we have an explicit case distinction.

Schinzel's Theorem on Abelian radical extensions

If α is strongly ℓ -indivisible, $K(\zeta_{\ell^n}, \sqrt[\ell^n]{\alpha})$ is abelian only if $\zeta_{\ell^n} \in K$.

Idea (for ℓ^n): Cyclotomic-Kummer extensions are non-abelian unless they are cyclotomic or Kummer.

Important consequence

If ℓ is odd, or if $\zeta_4 \in K$, the divisibility parameters over K are the same as the divisibility parameters over $K(\zeta_{\ell^n})$.

Cyclotomic-Kummer extensions

Let K be a number fields, ℓ a prime number, $G < K^{\times}$ finitely generated and torsion-free. Consider the cyclotomic-Kummer extensions

 $K(\sqrt[\ell^n]{G})$

We want to pin down the Kummer extensions $K(\sqrt[\ell^n]{G})/K(\zeta_{\ell^n})$.

USE THE DIVISIBILITY PARAMETERS OVER K(in fact, over $K(\zeta_4)$ for $\ell = 2$ and n > 1)

- You have everything you need.
- Divisibility parameters to rule them all.

Theorem [Debry and P., Journal of Number Theory 2016]

• For ℓ odd or $\zeta_4 \in K$, the degree of $K(\sqrt[\ell^n]{G})/K(\zeta_{\ell^n})$ is ℓ to the power

$$\sum_i \max(n-d_i,0) + \max(\max_i(h_i+\min(n,d_i)-n'),0)$$

where $n' = \max(n, v_{\ell} \# \mu_{K(\zeta_{\ell})}).$

• For $\ell = 2$, $\zeta_4 \notin K$, $n \ge 2$: we use divisibility parameters over $K(\zeta_4)$.

Work in progress:

[Advocaat, Chan, Pajaziti, Perissinotto and P., 2023]

The Galois group of $K(\sqrt[\ell^n]{G})/K(\zeta_{\ell^n})$ has a group structure that is determined by the divisibility parameters. There is an explicit formula.

Further results

The degree of $K(\sqrt[n]{G})/K(\zeta_n)$

Example

 $\zeta_2 \in \mathbb{Q}$, $\sqrt{5} \in \mathbb{Q}(\zeta_5)$

Theorem

There is some constant C such that, to compute the *failure of maximality* for the degree of $K(\sqrt[n]{G})/K(\zeta_n)$, we may replace n by gcd(n, C).

Computability of all degrees

 $\mathbb Q$ (Tronto's GitHub); Multiquadratic fields; Quartic cyclic fields; Number fields without quadratic subfields.

Compute generators for the Kummer extensions of K inside $K(\zeta_{\infty})$.

References: Many papers j.w. Hörmann, Perissinotto, Sgobba, Tronto.

Procedure

- Compute the degree of $K(\zeta_{\ell^E}, \sqrt[\ell^e]{G})$ for all ℓ and $E \ge e$.
- Compute $K(\zeta_{\ell^{E}}, \sqrt[\ell^{e}]{G}) \cap K(\zeta_{\infty})$ for $\zeta_{\ell^{e}} \in K$.

One can compute finitely many elements whose radicals generate all Kummer extensions of K inside $K(\zeta_{\infty})$. Then it suffices to check whether equivalent radicals are contained in G.

Entanglement groups

Introduced by H.W. Lenstra, developed by W.J. Palenstijn.

Theorem [P. Sgobba Tronto, Manuscripta Math. 2021] The degree of $K(\sqrt[n]{G})$ over K is

$$\frac{\#\langle K^{\times}, \sqrt[n]{G} \rangle / K^{\times}}{\# E_n} \quad \cdot \prod_{p \mid n, \zeta_n \notin K} \frac{p-1}{p}$$

where E_n is the finite abelian group

$$\frac{\operatorname{Aut}_{\mathsf{K}^{\times}}\langle \mathsf{K}^{\times}, \sqrt[n]{\mathsf{G}}\rangle}{\operatorname{Gal}(\mathsf{K}(\sqrt[n]{\mathsf{G}})/\mathsf{K})}$$

There is a constant C such that

$$\#E_n = \#E_{gcd(n,C)}$$

Example

For every $\alpha \in \mathbb{Q}^{\times}$, we have $\sqrt{\alpha} \in \mathbb{Q}(\zeta_{\infty})$.

Theorem [Järviniemi P., Research in Number Theory 2022]

If $K \neq \mathbb{Q}$, then there exists a sequence $(\alpha_i)_{i \in \mathbb{Z}_{>0}}$ with $\alpha_i \in K^{\times}$ for all i > 0 which are algebraic integers and not units, whose norms $N(\alpha_i)$ are pairwise coprime, and such that for all positive integers r, n we have

$$[K(\zeta_{\infty},\alpha_1^{1/n},\ldots,\alpha_r^{1/n}):K(\zeta_{\infty})]=n^r.$$

Thank you!