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Introduction



Kummer theory

Let K be a field, and n a positive integer. Suppose that

• n is coprime to char(K )

• ζn ∈ K .

Fundamental Theorem

For an extension of K , the following are equivalent:

• being abelian with exponent dividing n

• being generated by n-th roots of elements of K .

Such extensions are called Kummer extensions.

They correspond to the subgroups of K×/K×n.

The correspondence (for finite extensions) also gives:

Galois group ' Group of “radicals-to-be” .
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Example: Cyclic Galois group ↔ Just one radical

Let K = Q(ζ34) and consider the extension K (51/34)/K .

• The subfields are

K K (51/3) K (51/32) K (51/33) K (51/34)

• The group

〈5,K×3
4

〉 mod K×3
4

is cyclic of order 34 [because 5 is not a third power in K×].

• The subfields correspond to the subgroups of order

1 3 32 33 34

• The 34-th radicals-to-be are

534 533 532 53 5
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Problem

Consider a finitely generated subgroup G of K×.

Kummer extension

If ζn ∈ K ,

[K (
n
√
G ) : K ] = #G/K×n

Gal(K (
n
√
G )/K ) ' G/K×n

Cyclotomic-Kummer extension

If char(K ) - n,

[K (
n
√
G ) : K (ζn)] = #G/K (ζn)×n = · · ·

Gal(K (
n
√
G )/K (ζn)) ' G/K (ζn)×n ' · · ·
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Motivation

From now on, K is a number field.

Cyclotomic-Kummer extensions

• Studying them is a natural question of algebraic number theory.

• They appear when counting reductions with specific properties

(on the order or index of the reductions of algebraic numbers).

Artin’s Primitive Root Conjecture

Under GRH, the primes p of K for which (G mod p) = k×p have density

∑
n≥1

µ(n)

[K ( n
√
G ) : K ]
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Divisibility parameters
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Parameters for `-divisibility over K

Let α ∈ K×, not a root of unity.

Fix some prime number `.

Divisibility parameters (over K)

Integers (d , h), where

α = β`
d

ζ`h

with β ∈ K× and d maximal.

Example

2-divisibility parameters for −81 ∈ Q are (2, 1) because

−81 = 322 · (−1)︸︷︷︸
21
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Parameters for `-divisibility over K

Let G < K× be finitely generated and torsion-free. Write

G = 〈α1, . . . , αr 〉
αi = β`

di

i ζ`hi

Parameters

" The parameters (di , hi ) depend on the basis.

© We can use any basis that “shows all divisibility”, namely for which

r∑
i=1

di is maximal

Example

3-divisibility parameters for 〈12, 18〉 ∈ Q are (1, 0); (0, 0) because

〈12, 18〉 = 〈63, 18〉
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Good `-basis over K

G = 〈α1, . . . , αr 〉

αi = β`
di

i ζ`hi

•
∑

di is maximal if and only if β1, . . . , βr are strongly `-independent

• Testing for independence allows us (if not independent) to replace a

generator and get a basis that shows more divisibility. This is an

explicit finite procedure to construct a good `-basis.

Strongly `-independent

r∏
i=1

αxi
i ∈ 〈K

×`, µK 〉 ⇒ ∀i ` | xi
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Independence versus indivisibility

Strongly `-independent

r∏
i=1

αxi
i ∈ 〈K

×`, µK 〉 ⇒ ∀i ` | xi

For r > 1, this is more than “each αi strongly `-indivisible”.

Strongly `-indivisible

αx ∈ 〈K×`, µK 〉 ⇒ ` | x

Example

Over Q: 12 and 3 are not ±�, so they are each strongly 2-indivisible.

However, they are not strongly 2-independent because 12 · 3 = 62.
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The non-unicity of the divisibility parameters

The d-parameters are unique up to reordering.

The associated h-parameters are not unique.

Dilemma

We will present a parametric formula that also depends on the

h-parameters, but we say that they are not unique. Do we have to worry?
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Intermezzo

Figure : Area = Basis x Height / 2
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The non-unicity of the divisibility parameters

The d-parameters are unique up to reordering.

The associated h-parameters are not unique.

Theorem

We could make the h-parameters unique, by imposing the following

conditions (which mean that, whenever possible, we must set the

h-parameters to 0):

• For every 1 6 i 6 r we have hi = 0 or hi > z − di .

• If 1 6 i < j 6 r and hi , hj > 0 hold, then we have hi > hj and

di + hi < dj + hj .

• If 1 6 i < j 6 r and di = dj hold, then hj = 0.
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Parameters over K (ζ4), for ` = 2 and ζ4 /∈ K

To study K ( 2n
√
G ) for n ≥ 2, we need divisibility parameters over K (ζ4).

Example

Over Q: 2 has parameters (0, 0) because 2 6= ±�.

Over Q(ζ4): 2 has parameters (1, 2) because 2/ζ4 = �.

Theorem

In K there is at most one element that causes trouble, namely

ζ2s + ζ2s + 2

where s ≥ 2 is maximal such that K ∩Q(ζ2∞) = Q(ζ2s + ζ2s ).

The d-parameters over K (ζ4) are the same over K up to one parameter

that could increase by 1. The h-parameters can change and we have an

explicit case distinction.
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Key result: Schinzel’s Theorem (rephrased)

Schinzel’s Theorem on Abelian radical extensions

If α is strongly `-indivisible, K (ζ`n , `n
√
α) is abelian only if ζ`n ∈ K .

Idea (for `n): Cyclotomic-Kummer extensions are non-abelian unless they

are cyclotomic or Kummer.

Important consequence

If ` is odd, or if ζ4 ∈ K , the divisibility parameters over K are the same

as the divisibility parameters over K (ζ`n).
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Cyclotomic-Kummer extensions



Main Result for `n extensions (in layman’s terms)

Let K be a number fields, ` a prime number, G < K× finitely generated

and torsion-free. Consider the cyclotomic-Kummer extensions

K (
`n
√
G )

We want to pin down the Kummer extensions K ( `n
√
G )/K (ζ`n).

USE THE DIVISIBILITY PARAMETERS OVER K

(in fact, over K (ζ4) for ` = 2 and n > 1)

• You have everything you need.

• Divisibility parameters to rule them all.
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The degree of K ( `n
√
G )/K (ζ`n)

Theorem [Debry and P., Journal of Number Theory 2016]

• For ` odd or ζ4 ∈ K , the degree of K ( `n
√
G )/K (ζ`n) is ` to the power∑

i

max(n − di , 0) + max(max
i

(hi + min(n, di )− n′), 0)

where n′ = max(n, v`#µK(ζ`)).

• For ` = 2, ζ4 /∈ K , n ≥ 2: we use divisibility parameters over K (ζ4).
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The Galois group of K ( `n
√
G )/K (ζ`n)

Work in progress:

[Advocaat, Chan, Pajaziti, Perissinotto and P., 2023]

The Galois group of K ( `n
√
G )/K (ζ`n) has a group structure that is

determined by the divisibility parameters. There is an explicit formula.
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Further results



The degree of K ( n
√
G )/K (ζn)

Example

ζ2 ∈ Q,
√

5 ∈ Q(ζ5)

Theorem

There is some constant C such that, to compute the failure of maximality

for the degree of K ( n
√
G )/K (ζn), we may replace n by gcd(n,C ).

Computability of all degrees

Q (Tronto’s GitHub); Multiquadratic fields; Quartic cyclic fields;

Number fields without quadratic subfields.

Compute generators for the Kummer extensions of K inside K (ζ∞).

References: Many papers j.w. Hörmann, Perissinotto, Sgobba, Tronto.
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The degree of K (ζN ,
n
√
G )

Procedure

• Compute the degree of K (ζ`E ,
`e
√
G ) for all ` and E ≥ e.

• Compute K (ζ`E ,
`e
√
G ) ∩ K (ζ∞) for ζ`e ∈ K .

One can compute finitely many elements whose radicals generate all

Kummer extensions of K inside K (ζ∞). Then it suffices to check

whether equivalent radicals are contained in G .
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Entanglement groups

Introduced by H.W. Lenstra, developed by W.J. Palenstijn.

Theorem [P. Sgobba Tronto, Manuscripta Math. 2021]

The degree of K ( n
√
G ) over K is

#〈K×, n
√
G 〉/K×

#En
·

∏
p|n,ζp /∈K

p − 1

p

where En is the finite abelian group

AutK×〈K×,
n
√
G 〉

Gal(K ( n
√
G )/K )

There is a constant C such that

#En = #Egcd(n,C)
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Maximality of Kummer extensions

Example

For every α ∈ Q×, we have
√
α ∈ Q(ζ∞).

Theorem [Järviniemi P., Research in Number Theory 2022]

If K 6= Q, then there exists a sequence (αi )i∈Z>0 with αi ∈ K× for all

i > 0 which are algebraic integers and not units, whose norms N(αi ) are

pairwise coprime, and such that for all positive integers r , n we have

[K (ζ∞, α
1/n
1 , . . . , α1/n

r ) : K (ζ∞)] = nr .
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Thank you!
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