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(Supplementary Fig. 8), confirming the previously reported link 
between differential promoter methylation and gene expression 
of this key stem cell factor15.

Analysis of the single-cell gene expression data following 
dimensionality reduction using t-SNE revealed a continuous 
trajectory of transcriptional changes (Fig. 2a) that reflected the 
stages of reprogramming. A bifurcation event was observed in the 
day 16 and day 24 cells whereby the TRA-1-60+ cells followed a 
productive trajectory toward an increasingly ES-like gene expres-
sion profile, while the TRA-1-60− cells followed an alternative 
path away from both the fibroblast and ES-like gene expression 
profiles. A subpopulation of TRA-1-60+ cells was closer to ES cells 
in gene expression profile, indicating that they were in the later 
stages of reprogramming. On the other hand, t-SNE analysis of 
single-cell DNA methylation data divided cells into the unrepro-
grammed cell cluster (containing BJ, day 8 and TRA-1-60− cells) 
and the reprogrammed cell cluster (containing iPS and ES cells; 
Fig. 2b). TRA-1-60+ cells connected these two clusters at various 
stages of reprogramming.

Analysis of the temporal dynamics of gene expression revealed 
a marked increase in the proportion of TRA-1-60+ late pluripotent 
cells in day 24 compared with day 16 cells (Fig. 2c), highlighting  
the changes in cell-stage distributions that take place during 
reprogramming. We observed de novo methylation changes in 
the day 16 late-pluripotent population (Fig. 2d). In contrast, 
demethylating loci underwent a later and more gradual change 
in the day 24 late-pluripotent population, suggesting a different 
timing for activation of the molecular mechanisms governing  
de novo methylation and demethylation.

To demonstrate the utility of sc-GEM in dissecting complex 
tissues, we used it to profile primary lung adenocarcinomas 
(LUADs), in which aberrant DNA methylation is common. 
Primary tumors typically consist of many different cell types 
and can be genetically mosaic, but little is known about their 
epigenetic heterogeneity. We sought to identify the cellular  
subpopulation of LUAD tumors in which aberrant methylation 
occurs by simultaneously assaying the expression, genotype, and 
DNA methylation state of a panel of genes reported to be aber-
rantly methylated in LUAD16–18. Mutations in EGFR, ALK and 
ROS1 are commonly tested in clinics to stratify patients for dif-
ferent treatments19. As our patient samples were found to harbor 
mutations in EGFR but not in ALK or ROS1 in bulk genotyping 
assays, we screened for EGFR mutations in exons 18, 19, 20 and 
21 in our single-cell genotyping assay.

Hierarchical clustering of DNA methylation profiles from 
125 single cells isolated from three LUAD tumors (patient IDs: 
LUAD1, LUAD2 and LUAD3) and 32 single cells from one nontu-
mor lung (NTL) tissue (patient ID: NTL2; Supplementary Fig. 9)  

resulted in two clusters with different methylation profiles 
(Supplementary Fig. 10). While cells from the tumor samples 
were found in both clusters (53/125 in cluster 1 and 72/125 in 
cluster 2), most cells from the NTL sample (30/32) grouped into 
cluster 1. This suggested that the DNA methylation profile in 
cluster 2 was specific to a subpopulation of cells found only in 
the tumor samples. Consistent with this and corroborated in  
t-SNE analysis (Supplementary Fig. 11a,b), we found that most 
tumor cells in cluster 1 had wild-type EGFR status (51/53), while 
a high proportion of the tumor-derived cells within cluster 2 had 
EGFR mutations (63/72). These data reflected both the genetic 
and epigenetic heterogeneity of the cells in the tumor tissue and 
also revealed a distinctive DNA methylation pattern of the EGFR 
mutant subpopulation within the tumors.

The segregation of EGFR mutant and wild-type tumor-derived 
single cells into two distinct DNA methylation clusters suggested 
that these two populations might represent different cell types or 
cell stages. On a tumor sample assayed with an optimized panel of 
cell-type marker genes, we found that gene expression data indeed 
divided cells into two clusters, consistent with our hypothesis 
(Fig. 3a and Supplementary Fig. 12). For this tumor sample, 
most EGFR wild-type cells (15/19) were found in cluster 1, while 
most EGFR mutant cells (39/41) were found in cluster 2. Cells in 
cluster 2 expressed high levels of alveolar type II epithelial cell 
markers (e.g., SFTPC, MUC1, LAMP3, KRT19 and KRT7), reflect-
ing the common tissue-specific origin for LUAD. Cells in cluster 
1 were notably lacking in epithelial marker expression and were 
instead enriched for multiple stromal markers such as CD33 and 
CD14 (lymphoid and myeloid cells), ITGB2 and PTPRC (immune 
cells), PECAM1 (endothelial cells) and VIM (mesenchymal cells). 
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Figure 1 | sc-GEM analysis of human cellular reprogramming.  
(a) Cell collection schedule during the reprogramming process.  
Cells sorted for the TRA-1-60 pluripotency marker and additional  
reference cell lines are shown. (b) Dynamics of single-cell gene  
expression (top) and DNA methylation (bottom) during reprogramming. 
Single cells (columns) are grouped according to time of collection.  
Loci are arranged into pluripotent, intermediate and somatic groups  
based on gene expression pattern (top) and are grouped according to 
whether they undergo de novo methylation or demethylation during 
reprogramming (bottom). Gray boxes represent methylated loci, and  
white boxes represent unmethylated loci.
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(Supplementary Fig. 8), confirming the previously reported link 
between differential promoter methylation and gene expression 
of this key stem cell factor15.

Analysis of the single-cell gene expression data following 
dimensionality reduction using t-SNE revealed a continuous 
trajectory of transcriptional changes (Fig. 2a) that reflected the 
stages of reprogramming. A bifurcation event was observed in the 
day 16 and day 24 cells whereby the TRA-1-60+ cells followed a 
productive trajectory toward an increasingly ES-like gene expres-
sion profile, while the TRA-1-60− cells followed an alternative 
path away from both the fibroblast and ES-like gene expression 
profiles. A subpopulation of TRA-1-60+ cells was closer to ES cells 
in gene expression profile, indicating that they were in the later 
stages of reprogramming. On the other hand, t-SNE analysis of 
single-cell DNA methylation data divided cells into the unrepro-
grammed cell cluster (containing BJ, day 8 and TRA-1-60− cells) 
and the reprogrammed cell cluster (containing iPS and ES cells; 
Fig. 2b). TRA-1-60+ cells connected these two clusters at various 
stages of reprogramming.

Analysis of the temporal dynamics of gene expression revealed 
a marked increase in the proportion of TRA-1-60+ late pluripotent 
cells in day 24 compared with day 16 cells (Fig. 2c), highlighting  
the changes in cell-stage distributions that take place during 
reprogramming. We observed de novo methylation changes in 
the day 16 late-pluripotent population (Fig. 2d). In contrast, 
demethylating loci underwent a later and more gradual change 
in the day 24 late-pluripotent population, suggesting a different 
timing for activation of the molecular mechanisms governing  
de novo methylation and demethylation.

To demonstrate the utility of sc-GEM in dissecting complex 
tissues, we used it to profile primary lung adenocarcinomas 
(LUADs), in which aberrant DNA methylation is common. 
Primary tumors typically consist of many different cell types 
and can be genetically mosaic, but little is known about their 
epigenetic heterogeneity. We sought to identify the cellular  
subpopulation of LUAD tumors in which aberrant methylation 
occurs by simultaneously assaying the expression, genotype, and 
DNA methylation state of a panel of genes reported to be aber-
rantly methylated in LUAD16–18. Mutations in EGFR, ALK and 
ROS1 are commonly tested in clinics to stratify patients for dif-
ferent treatments19. As our patient samples were found to harbor 
mutations in EGFR but not in ALK or ROS1 in bulk genotyping 
assays, we screened for EGFR mutations in exons 18, 19, 20 and 
21 in our single-cell genotyping assay.

Hierarchical clustering of DNA methylation profiles from 
125 single cells isolated from three LUAD tumors (patient IDs: 
LUAD1, LUAD2 and LUAD3) and 32 single cells from one nontu-
mor lung (NTL) tissue (patient ID: NTL2; Supplementary Fig. 9)  

resulted in two clusters with different methylation profiles 
(Supplementary Fig. 10). While cells from the tumor samples 
were found in both clusters (53/125 in cluster 1 and 72/125 in 
cluster 2), most cells from the NTL sample (30/32) grouped into 
cluster 1. This suggested that the DNA methylation profile in 
cluster 2 was specific to a subpopulation of cells found only in 
the tumor samples. Consistent with this and corroborated in  
t-SNE analysis (Supplementary Fig. 11a,b), we found that most 
tumor cells in cluster 1 had wild-type EGFR status (51/53), while 
a high proportion of the tumor-derived cells within cluster 2 had 
EGFR mutations (63/72). These data reflected both the genetic 
and epigenetic heterogeneity of the cells in the tumor tissue and 
also revealed a distinctive DNA methylation pattern of the EGFR 
mutant subpopulation within the tumors.

The segregation of EGFR mutant and wild-type tumor-derived 
single cells into two distinct DNA methylation clusters suggested 
that these two populations might represent different cell types or 
cell stages. On a tumor sample assayed with an optimized panel of 
cell-type marker genes, we found that gene expression data indeed 
divided cells into two clusters, consistent with our hypothesis 
(Fig. 3a and Supplementary Fig. 12). For this tumor sample, 
most EGFR wild-type cells (15/19) were found in cluster 1, while 
most EGFR mutant cells (39/41) were found in cluster 2. Cells in 
cluster 2 expressed high levels of alveolar type II epithelial cell 
markers (e.g., SFTPC, MUC1, LAMP3, KRT19 and KRT7), reflect-
ing the common tissue-specific origin for LUAD. Cells in cluster 
1 were notably lacking in epithelial marker expression and were 
instead enriched for multiple stromal markers such as CD33 and 
CD14 (lymphoid and myeloid cells), ITGB2 and PTPRC (immune 
cells), PECAM1 (endothelial cells) and VIM (mesenchymal cells). 
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Figure 1 | sc-GEM analysis of human cellular reprogramming.  
(a) Cell collection schedule during the reprogramming process.  
Cells sorted for the TRA-1-60 pluripotency marker and additional  
reference cell lines are shown. (b) Dynamics of single-cell gene  
expression (top) and DNA methylation (bottom) during reprogramming. 
Single cells (columns) are grouped according to time of collection.  
Loci are arranged into pluripotent, intermediate and somatic groups  
based on gene expression pattern (top) and are grouped according to 
whether they undergo de novo methylation or demethylation during 
reprogramming (bottom). Gray boxes represent methylated loci, and  
white boxes represent unmethylated loci.
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(Supplementary Fig. 8), confirming the previously reported link 
between differential promoter methylation and gene expression 
of this key stem cell factor15.

Analysis of the single-cell gene expression data following 
dimensionality reduction using t-SNE revealed a continuous 
trajectory of transcriptional changes (Fig. 2a) that reflected the 
stages of reprogramming. A bifurcation event was observed in the 
day 16 and day 24 cells whereby the TRA-1-60+ cells followed a 
productive trajectory toward an increasingly ES-like gene expres-
sion profile, while the TRA-1-60− cells followed an alternative 
path away from both the fibroblast and ES-like gene expression 
profiles. A subpopulation of TRA-1-60+ cells was closer to ES cells 
in gene expression profile, indicating that they were in the later 
stages of reprogramming. On the other hand, t-SNE analysis of 
single-cell DNA methylation data divided cells into the unrepro-
grammed cell cluster (containing BJ, day 8 and TRA-1-60− cells) 
and the reprogrammed cell cluster (containing iPS and ES cells; 
Fig. 2b). TRA-1-60+ cells connected these two clusters at various 
stages of reprogramming.

Analysis of the temporal dynamics of gene expression revealed 
a marked increase in the proportion of TRA-1-60+ late pluripotent 
cells in day 24 compared with day 16 cells (Fig. 2c), highlighting  
the changes in cell-stage distributions that take place during 
reprogramming. We observed de novo methylation changes in 
the day 16 late-pluripotent population (Fig. 2d). In contrast, 
demethylating loci underwent a later and more gradual change 
in the day 24 late-pluripotent population, suggesting a different 
timing for activation of the molecular mechanisms governing  
de novo methylation and demethylation.

To demonstrate the utility of sc-GEM in dissecting complex 
tissues, we used it to profile primary lung adenocarcinomas 
(LUADs), in which aberrant DNA methylation is common. 
Primary tumors typically consist of many different cell types 
and can be genetically mosaic, but little is known about their 
epigenetic heterogeneity. We sought to identify the cellular  
subpopulation of LUAD tumors in which aberrant methylation 
occurs by simultaneously assaying the expression, genotype, and 
DNA methylation state of a panel of genes reported to be aber-
rantly methylated in LUAD16–18. Mutations in EGFR, ALK and 
ROS1 are commonly tested in clinics to stratify patients for dif-
ferent treatments19. As our patient samples were found to harbor 
mutations in EGFR but not in ALK or ROS1 in bulk genotyping 
assays, we screened for EGFR mutations in exons 18, 19, 20 and 
21 in our single-cell genotyping assay.

Hierarchical clustering of DNA methylation profiles from 
125 single cells isolated from three LUAD tumors (patient IDs: 
LUAD1, LUAD2 and LUAD3) and 32 single cells from one nontu-
mor lung (NTL) tissue (patient ID: NTL2; Supplementary Fig. 9)  

resulted in two clusters with different methylation profiles 
(Supplementary Fig. 10). While cells from the tumor samples 
were found in both clusters (53/125 in cluster 1 and 72/125 in 
cluster 2), most cells from the NTL sample (30/32) grouped into 
cluster 1. This suggested that the DNA methylation profile in 
cluster 2 was specific to a subpopulation of cells found only in 
the tumor samples. Consistent with this and corroborated in  
t-SNE analysis (Supplementary Fig. 11a,b), we found that most 
tumor cells in cluster 1 had wild-type EGFR status (51/53), while 
a high proportion of the tumor-derived cells within cluster 2 had 
EGFR mutations (63/72). These data reflected both the genetic 
and epigenetic heterogeneity of the cells in the tumor tissue and 
also revealed a distinctive DNA methylation pattern of the EGFR 
mutant subpopulation within the tumors.

The segregation of EGFR mutant and wild-type tumor-derived 
single cells into two distinct DNA methylation clusters suggested 
that these two populations might represent different cell types or 
cell stages. On a tumor sample assayed with an optimized panel of 
cell-type marker genes, we found that gene expression data indeed 
divided cells into two clusters, consistent with our hypothesis 
(Fig. 3a and Supplementary Fig. 12). For this tumor sample, 
most EGFR wild-type cells (15/19) were found in cluster 1, while 
most EGFR mutant cells (39/41) were found in cluster 2. Cells in 
cluster 2 expressed high levels of alveolar type II epithelial cell 
markers (e.g., SFTPC, MUC1, LAMP3, KRT19 and KRT7), reflect-
ing the common tissue-specific origin for LUAD. Cells in cluster 
1 were notably lacking in epithelial marker expression and were 
instead enriched for multiple stromal markers such as CD33 and 
CD14 (lymphoid and myeloid cells), ITGB2 and PTPRC (immune 
cells), PECAM1 (endothelial cells) and VIM (mesenchymal cells). 
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Figure 1 | sc-GEM analysis of human cellular reprogramming.  
(a) Cell collection schedule during the reprogramming process.  
Cells sorted for the TRA-1-60 pluripotency marker and additional  
reference cell lines are shown. (b) Dynamics of single-cell gene  
expression (top) and DNA methylation (bottom) during reprogramming. 
Single cells (columns) are grouped according to time of collection.  
Loci are arranged into pluripotent, intermediate and somatic groups  
based on gene expression pattern (top) and are grouped according to 
whether they undergo de novo methylation or demethylation during 
reprogramming (bottom). Gray boxes represent methylated loci, and  
white boxes represent unmethylated loci.
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(Supplementary Fig. 8), confirming the previously reported link 
between differential promoter methylation and gene expression 
of this key stem cell factor15.

Analysis of the single-cell gene expression data following 
dimensionality reduction using t-SNE revealed a continuous 
trajectory of transcriptional changes (Fig. 2a) that reflected the 
stages of reprogramming. A bifurcation event was observed in the 
day 16 and day 24 cells whereby the TRA-1-60+ cells followed a 
productive trajectory toward an increasingly ES-like gene expres-
sion profile, while the TRA-1-60− cells followed an alternative 
path away from both the fibroblast and ES-like gene expression 
profiles. A subpopulation of TRA-1-60+ cells was closer to ES cells 
in gene expression profile, indicating that they were in the later 
stages of reprogramming. On the other hand, t-SNE analysis of 
single-cell DNA methylation data divided cells into the unrepro-
grammed cell cluster (containing BJ, day 8 and TRA-1-60− cells) 
and the reprogrammed cell cluster (containing iPS and ES cells; 
Fig. 2b). TRA-1-60+ cells connected these two clusters at various 
stages of reprogramming.

Analysis of the temporal dynamics of gene expression revealed 
a marked increase in the proportion of TRA-1-60+ late pluripotent 
cells in day 24 compared with day 16 cells (Fig. 2c), highlighting  
the changes in cell-stage distributions that take place during 
reprogramming. We observed de novo methylation changes in 
the day 16 late-pluripotent population (Fig. 2d). In contrast, 
demethylating loci underwent a later and more gradual change 
in the day 24 late-pluripotent population, suggesting a different 
timing for activation of the molecular mechanisms governing  
de novo methylation and demethylation.

To demonstrate the utility of sc-GEM in dissecting complex 
tissues, we used it to profile primary lung adenocarcinomas 
(LUADs), in which aberrant DNA methylation is common. 
Primary tumors typically consist of many different cell types 
and can be genetically mosaic, but little is known about their 
epigenetic heterogeneity. We sought to identify the cellular  
subpopulation of LUAD tumors in which aberrant methylation 
occurs by simultaneously assaying the expression, genotype, and 
DNA methylation state of a panel of genes reported to be aber-
rantly methylated in LUAD16–18. Mutations in EGFR, ALK and 
ROS1 are commonly tested in clinics to stratify patients for dif-
ferent treatments19. As our patient samples were found to harbor 
mutations in EGFR but not in ALK or ROS1 in bulk genotyping 
assays, we screened for EGFR mutations in exons 18, 19, 20 and 
21 in our single-cell genotyping assay.

Hierarchical clustering of DNA methylation profiles from 
125 single cells isolated from three LUAD tumors (patient IDs: 
LUAD1, LUAD2 and LUAD3) and 32 single cells from one nontu-
mor lung (NTL) tissue (patient ID: NTL2; Supplementary Fig. 9)  

resulted in two clusters with different methylation profiles 
(Supplementary Fig. 10). While cells from the tumor samples 
were found in both clusters (53/125 in cluster 1 and 72/125 in 
cluster 2), most cells from the NTL sample (30/32) grouped into 
cluster 1. This suggested that the DNA methylation profile in 
cluster 2 was specific to a subpopulation of cells found only in 
the tumor samples. Consistent with this and corroborated in  
t-SNE analysis (Supplementary Fig. 11a,b), we found that most 
tumor cells in cluster 1 had wild-type EGFR status (51/53), while 
a high proportion of the tumor-derived cells within cluster 2 had 
EGFR mutations (63/72). These data reflected both the genetic 
and epigenetic heterogeneity of the cells in the tumor tissue and 
also revealed a distinctive DNA methylation pattern of the EGFR 
mutant subpopulation within the tumors.

The segregation of EGFR mutant and wild-type tumor-derived 
single cells into two distinct DNA methylation clusters suggested 
that these two populations might represent different cell types or 
cell stages. On a tumor sample assayed with an optimized panel of 
cell-type marker genes, we found that gene expression data indeed 
divided cells into two clusters, consistent with our hypothesis 
(Fig. 3a and Supplementary Fig. 12). For this tumor sample, 
most EGFR wild-type cells (15/19) were found in cluster 1, while 
most EGFR mutant cells (39/41) were found in cluster 2. Cells in 
cluster 2 expressed high levels of alveolar type II epithelial cell 
markers (e.g., SFTPC, MUC1, LAMP3, KRT19 and KRT7), reflect-
ing the common tissue-specific origin for LUAD. Cells in cluster 
1 were notably lacking in epithelial marker expression and were 
instead enriched for multiple stromal markers such as CD33 and 
CD14 (lymphoid and myeloid cells), ITGB2 and PTPRC (immune 
cells), PECAM1 (endothelial cells) and VIM (mesenchymal cells). 
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Figure 1 | sc-GEM analysis of human cellular reprogramming.  
(a) Cell collection schedule during the reprogramming process.  
Cells sorted for the TRA-1-60 pluripotency marker and additional  
reference cell lines are shown. (b) Dynamics of single-cell gene  
expression (top) and DNA methylation (bottom) during reprogramming. 
Single cells (columns) are grouped according to time of collection.  
Loci are arranged into pluripotent, intermediate and somatic groups  
based on gene expression pattern (top) and are grouped according to 
whether they undergo de novo methylation or demethylation during 
reprogramming (bottom). Gray boxes represent methylated loci, and  
white boxes represent unmethylated loci.
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Table: AUC values across different methods 
compared against experimental network 

Random baselines: 0.02 and 0.5 



Two inference problems
Quantifying Turing patterns and their 
bifurcation 

Joint work with 

Bjorn Sandstede Sam Maffa

Inferring mechanisms from single-cell 
sequencing data 

Joint work with 
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(Supplementary Fig. 8), confirming the previously reported link 
between differential promoter methylation and gene expression 
of this key stem cell factor15.

Analysis of the single-cell gene expression data following 
dimensionality reduction using t-SNE revealed a continuous 
trajectory of transcriptional changes (Fig. 2a) that reflected the 
stages of reprogramming. A bifurcation event was observed in the 
day 16 and day 24 cells whereby the TRA-1-60+ cells followed a 
productive trajectory toward an increasingly ES-like gene expres-
sion profile, while the TRA-1-60− cells followed an alternative 
path away from both the fibroblast and ES-like gene expression 
profiles. A subpopulation of TRA-1-60+ cells was closer to ES cells 
in gene expression profile, indicating that they were in the later 
stages of reprogramming. On the other hand, t-SNE analysis of 
single-cell DNA methylation data divided cells into the unrepro-
grammed cell cluster (containing BJ, day 8 and TRA-1-60− cells) 
and the reprogrammed cell cluster (containing iPS and ES cells; 
Fig. 2b). TRA-1-60+ cells connected these two clusters at various 
stages of reprogramming.

Analysis of the temporal dynamics of gene expression revealed 
a marked increase in the proportion of TRA-1-60+ late pluripotent 
cells in day 24 compared with day 16 cells (Fig. 2c), highlighting  
the changes in cell-stage distributions that take place during 
reprogramming. We observed de novo methylation changes in 
the day 16 late-pluripotent population (Fig. 2d). In contrast, 
demethylating loci underwent a later and more gradual change 
in the day 24 late-pluripotent population, suggesting a different 
timing for activation of the molecular mechanisms governing  
de novo methylation and demethylation.

To demonstrate the utility of sc-GEM in dissecting complex 
tissues, we used it to profile primary lung adenocarcinomas 
(LUADs), in which aberrant DNA methylation is common. 
Primary tumors typically consist of many different cell types 
and can be genetically mosaic, but little is known about their 
epigenetic heterogeneity. We sought to identify the cellular  
subpopulation of LUAD tumors in which aberrant methylation 
occurs by simultaneously assaying the expression, genotype, and 
DNA methylation state of a panel of genes reported to be aber-
rantly methylated in LUAD16–18. Mutations in EGFR, ALK and 
ROS1 are commonly tested in clinics to stratify patients for dif-
ferent treatments19. As our patient samples were found to harbor 
mutations in EGFR but not in ALK or ROS1 in bulk genotyping 
assays, we screened for EGFR mutations in exons 18, 19, 20 and 
21 in our single-cell genotyping assay.

Hierarchical clustering of DNA methylation profiles from 
125 single cells isolated from three LUAD tumors (patient IDs: 
LUAD1, LUAD2 and LUAD3) and 32 single cells from one nontu-
mor lung (NTL) tissue (patient ID: NTL2; Supplementary Fig. 9)  

resulted in two clusters with different methylation profiles 
(Supplementary Fig. 10). While cells from the tumor samples 
were found in both clusters (53/125 in cluster 1 and 72/125 in 
cluster 2), most cells from the NTL sample (30/32) grouped into 
cluster 1. This suggested that the DNA methylation profile in 
cluster 2 was specific to a subpopulation of cells found only in 
the tumor samples. Consistent with this and corroborated in  
t-SNE analysis (Supplementary Fig. 11a,b), we found that most 
tumor cells in cluster 1 had wild-type EGFR status (51/53), while 
a high proportion of the tumor-derived cells within cluster 2 had 
EGFR mutations (63/72). These data reflected both the genetic 
and epigenetic heterogeneity of the cells in the tumor tissue and 
also revealed a distinctive DNA methylation pattern of the EGFR 
mutant subpopulation within the tumors.

The segregation of EGFR mutant and wild-type tumor-derived 
single cells into two distinct DNA methylation clusters suggested 
that these two populations might represent different cell types or 
cell stages. On a tumor sample assayed with an optimized panel of 
cell-type marker genes, we found that gene expression data indeed 
divided cells into two clusters, consistent with our hypothesis 
(Fig. 3a and Supplementary Fig. 12). For this tumor sample, 
most EGFR wild-type cells (15/19) were found in cluster 1, while 
most EGFR mutant cells (39/41) were found in cluster 2. Cells in 
cluster 2 expressed high levels of alveolar type II epithelial cell 
markers (e.g., SFTPC, MUC1, LAMP3, KRT19 and KRT7), reflect-
ing the common tissue-specific origin for LUAD. Cells in cluster 
1 were notably lacking in epithelial marker expression and were 
instead enriched for multiple stromal markers such as CD33 and 
CD14 (lymphoid and myeloid cells), ITGB2 and PTPRC (immune 
cells), PECAM1 (endothelial cells) and VIM (mesenchymal cells). 
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Figure 1 | sc-GEM analysis of human cellular reprogramming.  
(a) Cell collection schedule during the reprogramming process.  
Cells sorted for the TRA-1-60 pluripotency marker and additional  
reference cell lines are shown. (b) Dynamics of single-cell gene  
expression (top) and DNA methylation (bottom) during reprogramming. 
Single cells (columns) are grouped according to time of collection.  
Loci are arranged into pluripotent, intermediate and somatic groups  
based on gene expression pattern (top) and are grouped according to 
whether they undergo de novo methylation or demethylation during 
reprogramming (bottom). Gray boxes represent methylated loci, and  
white boxes represent unmethylated loci.
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How to distinguish different patterns?
Example 1: fish skin model

• How does fish skin form their patterns?  

• Example [Bullara & Decker] on-lattice model 

• Stripe/Spots/Nothing? 

• Depends on spatial extent and strength of interaction between cells



How to distinguish different patterns?
Example 2: reaction-diffusion equation

• Turing patterns: introduced by Alan Turing in 1952 to 
describe patterns in nature; 

• Spatially extended reaction-diffusion systems are 
known to generate such patterns, such as 
Brusselator (we focus on the case with 

): x = (x1, x2) ∈ ℝ2

 for u(x1, x2, T) T ≫ 1

Diffusion Reaction

Wikipedia (Pufferfish skin)

Wikipedia (Patterned vegetation)



Bifurcation tracing…
 and : bifurcation parametersa b

Where does the pattern 
transition happen in the 

parameter space?

Blue spots

Stripes

Red spots

Homogeneous

14



Where does the pattern 
transition happen in the 

parameter space?

Blue spots

Stripes
Red spots

Homogeneous

Spoiler (what we found)



Challenges
Traditional approaches: 

• Visual inspection for direct simulation: cheap, but less accurate 

• Existing software (continuation): given initial value problems, compute each pattern and their stability and 
find their interfaces between different patterns.  

accurate, but expensive and specialized (wave number selection? bistability?) 

They don’t work for agent-based models like the fish skin! 

Solve a classification problem via neural network? 

• Requires a training set with pre-labeled solutions — lots of human effort… 

• Interpretability? 

• Active learning (collect data strategically, only near bifurcation curve)? 

Data-driven algorithm via cheap, direct simulation? 

Sure, but how should we quantify the patterns?  

Furthermore, how do we compare the patterns? 



Some options for pattern quantification

• Option 1: 2D Fourier coefficients 

• Option 2: pattern correlation function [Gavagnin et al 2018]: 

 

• They are not good enough at distinguishing spots/stripes with random 
orientations!

f(m) =
c(m)

𝔼[c(m)]
, c(m) = |{(x, y) ∈ sublevel set |∥x − y∥ = m} |



Our approach: from PDE solution to patterns

Shape 
boundaries

r1

r2

• Choose disk with radius r 

• Connect two data points precisely when 
we can position the disk so that it 
contains only these two data points

-shapesα



Our approach: from patterns to metric

                 ,                   =                   ,                 distance( ) dW( )

2-Wasserstein distance  

Theorem (under some assumptions):  The pattern statistics 

                is continuous in the Wasserstein metric on 

, bounded between 0 (stripes) and 1 (spots) roundness =
4π × area
perimeter2



Empirical evaluation of Wasserstein distance in feature space

• For 1D histograms (our case!), with Euclidean cost, it 
reduces to: 

,  [Kolouri and Martin 2018] 

where  is the inverse cumulative density function of 

.  

• Its sample-based approximation can be computed 
efficiently via a sorting algorithm. Existing implementation: 
https://github.com/nklb/wasserstein-distance 

d2
W(ρ, μ) = ∫

1

0
(F−1

ρ (p) − F−1
μ (p))2 dp

F−1
ρ (p)

ρ

Figures reproduced from [Kolouri and Martin 2018]

Intuitively, the metric measures 
the gap between all quantiles



Numerical: continuation framework

a

b

L

p+h

p-h

Predictor

Bifurcation curves are determined by 
maximizing Wasserstein distance of 

pattern statistics across curve

f
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Application: Brusselator model

4 5 6 7 86
8

10
12
14

numerical
analytical

Blue spots Stripes
Red spots

Homogeneous

Validation: 

• Stripes/Spots: visual inspection… 

• Homogeneous state: analytical solution



Moving back to the original motivation…
Example 1: fish skin model

• How does fish skin form their patterns?  

• Example [Bullara & Decker] on-lattice model 

• Stripe/Spots/Nothing? 

• Depends on spatial extent and strength of interaction between cells



Fish skin model?

0 1 2 3 4
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5
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20

Horizontal: strength of interaction 

Vertical: spatial extent of interaction
Wasserstein distance decreases 
when patterns are destroyed



Thanks! Questions?


