

Two Inference Problems in Dynamical Systems from Mathematical and Computational Biology

Wenjun Zhao PIMS Postdoc Seminar 03.26.2025

Applied Mathematics

Two inference problems

Inferring mechanisms from single-cell sequencing data

Joint work with

Bjorn Sandstede

Ritambhara Singh

Erica Larschan

Quantifying Turing patterns and their bifurcation

Joint work with

Biorn Sandstede

Sam Maffa

Problem statement

Which gene (row) activated/ inhibited which gene (row)?

ZIC3

Causation between time series

Granger causality:

- (1) The cause happens prior ٠ to its effect
- (2) The cause has unique • information about the future values of its effect

Genes

Problem:

No actual time series: Cells are destroyed during measurement

BJ • d8 d16T+ d24T+ IPS ES

Trajectory inference through optimal transport

 $x_{i,t-1}$

Find joint probability distribution Γ $(\Gamma_{ij} \ge 0, \sum_{i=1}^{N} \Gamma_{ij} = \frac{1}{M}, \sum_{i=1}^{M} \Gamma_{ij} = \frac{1}{N})$ as solution to

$$\Gamma = \arg \min_{\Gamma} \sum_{\substack{i=1,\dots,N\\j=1,\dots,M}} |x_i - y_j|_{\mathbb{R}^m}^2 \Gamma_{ij}$$

We interpret Γ_{ij} as the probability that x_i is mapped to y_i

Recovered cell trajectories

OT velocity

- Solve the trajectory problem via OT as mentioned For cell $x_{i,t} \in \mathbb{R}^m$, infer its past $\hat{x}_{i,t-1}$ and future $\hat{x}_{i,t+1}$ via barycentric projection
- Estimate the 'OT velocity' for each cell via finite difference

Velocity for gene g in each cell: $v_{i,t}^g = \frac{dx_{i,t}^g}{dt} \approx \frac{\hat{x}_{i,t+1}^g - \hat{x}_{i,t-1}^g}{2}$

Validation:

(1) OT velocity is similar to RNA velocity (a method using reaction model for unspliced/spliced RNA counts); (2) RNA velocity is only available in deeply sequenced datasets.

Area under **Precision Recall** Curve (AUPR)

How many groundtruth edges are identified?

random baseline

Features for AUPR:

- Requires ground truth;
- Bounded between 0 and 1; (2)
- Higher is better; (3)
- Random baseline = density of (4) truth.

Result on simulated data

Beeline datasets

Real networks: (1) Hematopoietic Stem Cell Differentiation (HSC) (2) Gonadal Sex Determination (GSD)

Count matrices simulated from SDEs

Metrics:

- (1) AUPR ratio = AUPR over random baseline;
- (2) For signed prediction, 'true positive' requires correct sign.
 Some algorithms don't have signed prediction.

AUPR ratio (unsigned)

AUPR ratio (signed)

	experimental network	
	AUPRC	AUROC
GENIE3	0.027	0.592
GRNBoost2	0.033	0.616
SINCERITIES	0.018	0.474
HARISSA	0.028	0.586
CARDAMOM	0.024	0.566
OTVelo-Corr	0.031	0.667
OTVelo-Granger	0.020	0.480

Table: AUC values across different methods compared against experimental network Random baselines: 0.02 and 0.5

Result on real data

Two inference problems

Inferring mechanisms from single-cell sequencing data

Joint work with

Bjorn Sandstede

Ritambhara Singh

Erica Larschan

Quantifying Turing patterns and their bifurcation

Joint work with

Biorn Sandstede

Sam Maffa

How to distinguish different patterns? **Example 1: fish skin model**

- How does fish skin form their patterns?
- Example [Bullara & Decker] on-lattice model ullet
- Stripe/Spots/Nothing?
- Depends on spatial extent and strength of interaction between cells lacksquare

How to distinguish different patterns? Example 2: reaction-diffusion equation

- Turing patterns: introduced by Alan Turing in 1952 to describe patterns in nature;
- Spatially extended reaction-diffusion systems are known to generate such patterns, such as Brusselator (we focus on the case with

$$x = (x_1, x_2) \in \mathbb{R}^2$$
):

$$egin{aligned} \partial_t u &= D_0
abla^2 u + a - (1 + \ \partial_t v &= D_1
abla^2 v + b u - v u^2 \end{aligned}$$

Diffusion

Wikipedia (Pufferfish skin)

 $b)u + vu^2$

Reaction

Wikipedia (Patterned vegetation) $\mathcal{U}(x_1, x_2, T) \text{ for } T \gg 1$

Bifurca $egin{aligned} \partial_t u &= D_0
abla^2 u + a - (1 + b) u + \ \partial_t v &= D_1
abla^2 v + b u - v u^2 \end{aligned}$

Where does the pattern transition happen in the parameter space?

a

<u>Spoiler (what we found)</u>

Where does the pattern transition happen in the parameter space?

Challenges

Traditional approaches:

- Visual inspection for direct simulation: cheap, but less accurate
- ulletfind their interfaces between different patterns.

accurate, but expensive and specialized (wave number selection? bistability?)

They don't work for agent-based models like the fish skin!

Solve a classification problem via neural network?

- Requires a training set with pre-labeled solutions lots of human effort...
- Interpretability?
- Active learning (collect data strategically, only near bifurcation curve)?

<u>Data-driven</u> algorithm via cheap, direct simulation?

Sure, but how should we <u>quantify the patterns</u>?

Furthermore, how do we <u>compare the patterns</u>?

Existing software (continuation): given initial value problems, compute each pattern and their stability and

Some options for pattern quantification

- Option 1: 2D Fourier coefficients
- Option 2: pattern correlation function [Gavagnin et al 2018]: $f(m) = \frac{c(m)}{\mathbb{E}[c(m)]}, \quad c(m) = |\{(x, y) \in \text{sublevel set } | ||x - y|| = m\}|$
- They are not good enough at distinguishing spots/stripes with random orientations!

Our approach: from PDE solution to patterns

IVP solver

sublevel set

Reaction-diffusion system $\partial_t q(x,t) = D \nabla^2 q + R(q)$

 $x \in [0, L_x] \times [0, L_y]$

Random initial condition

 α -shapes

- •

Connect two data points precisely when we can position the disk so that it contains only these two data points

Our approach: from patterns to metric

cluster-wise features

<u>Theorem (under some assumptions)</u>: The pattern statistics $\mu_f \colon \mathbb{R}^2 \longrightarrow \operatorname{Prob}(\mathcal{Z}), \ p \longmapsto \mu_f(p)$ is continuous in the Wasserstein metric on $\operatorname{Prob}(\mathcal{Z})$

 $4\pi \times area$ $roundness = \frac{\pi \times \pi \times arca}{perimeter^2}$, bounded between 0 (stripes) and 1 (spots)

Empirical evaluation of Wasserstein distance in feature space

$$d_W^2(\rho,\mu) = \int_0^1 (F_{\rho}^{-1}(p) - F_{\mu}^{-1}(p))^2 dp$$
, [Kolouri and Marti

• Its sample-based approximation can be computed https://github.com/nklb/wasserstein-distance

Figures reproduced from [Kolouri and Martin 2018]

		р _х р _Y
4 S		
n d	ista	nce

Numerical: continuation framework

Bifurcation curves are determined by maximizing Wasserstein distance of pattern statistics across curve

$$\mathbf{p}_* := rg\max_{\mathbf{p}\in \mathbf{L}} \mathbf{d}_{\mathbf{W}}(\mu_{\mathbf{f}}(\mathbf{p}-\mathbf{h}), \mu_{\mathbf{f}}(\mathbf{p}))$$

Application: Brusselator model

Validation:

- Stripes/Spots: visual inspection... lacksquare
- Homogeneous state: analytical solution ●

Moving back to the original motivation... Example 1: fish skin model

- How does fish skin form their patterns?
- Example [Bullara & Decker] on-lattice model
- Stripe/Spots/Nothing?
- Depends on spatial extent and strength of interaction between cells

Horizontal: strength of interaction Vertical: spatial extent of interaction

Wasserstein distance decreases when patterns are destroyed

Thanks! Questions?