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A Review of Copulas and Sklar’s Theorem

e Definition: A copula is a multivariate distribution function with uniform

marginals on [0, 1].
o Let (Y7,Y5) ~ F, a bivariate cdf with continuous marginals F7y, F5.

e Sklar's Theorem (i): Given F, there exists a unique copula C : [0,1]% —
[0, 1] such that

F (y1,92) = C (F1(y1), F>(y2)) , where

C (u1,u2) = F (Fy (u1), Fy * (u2)) (1)



— The copula function in (1) is called the copula function of F or of
(Y1, Y2):

C (u1,u2) = Pr(F1 (Y1) < ug, F2(Y2) < up).

— Since F7 (Y1) ~ U [0,1] and F5 (Y3) ~ U [0, 1], C characterizes rank
dependence between Y7 and Y5.

e Example: Let ®, denote the standard bivariate normal cdf with correlation
coefficient p € (0,1). Then (1) yields the Gaussian copula:

COUSN (41, up; p) = b (O H(uz), & H(uz)) .



e Sklar’'s Theorem (ii): For any copula C' and any marginal cdfs Fy, F»,
C (F1(y1), F>(y2)) is a bivariate distribution function with marginals F7y, F5
and copula C.

— Let (Ul, U2) ~ C. Then
C (Fi(y1), Fa(y2)) = Pr(Fy 1 (U1) < w1, B 1 (U2) < w2) 5 (2)

where F; 1 (U1) ~ Fy and F5 1 (Us) ~ F.

e Example: Let Fj(y;) be lognormal and F5(y») be x2. Then

CGaussian (B (y1), Fo(ya); p) = &, <¢_1(F1(y1))7 ¢_1(F2(y2)))

is a bivariate cdf with lognormal and X,% marginals respectively and the
Gaussian copula with parameter p.



o Let {C(uy,un;0):60 € O} denote a parametric family of copulas. Then
{C(F1(y1), F>(y2);0) : 0 € ©} is a semiparametric family of bivariate
cdfs with density function

f1(y1) fo(y2)e(F1(y1), F2(y2); 0),

where ¢ is the copula density function and f1(y1), fo(y2) are pdfs of
F1(y1), F2(y2)-

e Copulas provide a flexible approach to constructing semiparametric multi-
variate distributions

— there exist rich classes of parametric copulas (Gaussian, Archimedean,...).



e Suppose a random sample {Y7;, Y2;}:" ¢ is drawn from the pdf above for
some A € ©.

e Estimation and inference can be done via either full MLE or two-step MLE
(e.g. Genest and Rivest 2003; Chen and Fan, 2006a,b; Chen, Fan, and
Tsyrennikov, 2006; Joe 1997, 2015)

n

In L (f1, f2,0) = ) [In f1(Y1;) + I f2(Y2i)]‘|'§n: Inc(F1(Y14), F2(Y2;): 0)
i=1 i=1

— needs to have estimators of the marginal cdfs and/or pdfs (empirical
cdf, kernel, sieve estimates,...)

e Many empirical applications in Economics and Finance, see Fan and Patton
(2014) for a review.



Vector Copulas and Vector Sklar Theorem

e Consider two random vectors Y7 and Y5 such that (Y7,Y2) ~ P (F),
where P (F) denotes a probabilty measure (cdf) on R x R9% with ab-
solutely continuous marginals Pj (F}) on R% with support contained in

a convex set V. for k =1, 2.

e Questions: how to
— characterize rank dependence between random vectors Y7 and Y5;

— construct multivariate distributions with given multivariate marginals

and rank dependence.



e Some existing proposals

— copula impossibility result (e.g. Genest, 1995): the only copula C' such
that C' (F1 (y1) , F5 (y2)) defines a (d1 + do)-dimensional cdf with d-
dimensional marginal F7 and dy-dimensional F5 for all dy and d» such
that d; + dp > 3, and for all F and F5, is C (u1, up) = ujuy.

— linkage function: Li et al (1996) makes use of Knothe-Rosenblatt trans-
form of F}. to define a linkage function analogously to a copula func-
tion. Unlike copulas, no known flexible parametric families of linkage
functions are available.

e This talk introduces vector copulas and vector Sklar Theorem



e Definition: A vector copula C' is defined as a joint distribution function
on [0, 1]d with uniform marginals p; on U = [0, 1]dk,k = 1,2, where
d = di + do.

e How to extract the vector copula from P (F')?
e When di = dy = 1, we rely on ranks/quantiles

e For d;. > 1, we rely on (generalized) vector ranks/vector quantiles: Bre-
nier maps between P, and ., see Chernozhukov et al. (2017)



e Brenier-McCann Theorem:

— there exists a convex function ¥ : U, — R U {400} such that
VyYr#u = Pi. The function V), exists and is unique, pp-almost
everywhere. V.. is called the vector quantile of Pj.

— there exists a convex function 9 : Y, — R U {+oo} such that
V1# P, = pg. The function Vi) exists, is unique and equal to
Vzp];l, Py-almost everywhere. V1y is called the vector rank of Pj.



e Generalized Vector Quantiles and Ranks

o Let ¢, I < L for some finite integer L, be convex functions such that
the following hold.

— the map Ty (= Vi 1,0 Vo 10 ... 0 Vi 1 exists and satis-
fies T.#uy. = Pp. The map T} is called generalized vector quantile
associated with F.

— themap T} := vzp;;,lovzp;;,zo...ovwz’L exists and satisfies T} # Pj, =

p- The map T is called generalized vector rank associated with Py.

e By choosing L and vy, ;, [ < L, we construct generalized vector quantile
and rank with closed-form expressions.



e Example. Let Y ~ &g (-;Xg), where & > 0. The generalized
Gaussian vector rank is

where

— V3, (ug) = P(ug), ug € (0, 1)d’<, is the OT map between <I>dk ( Idk)
and pg;

- V5, = Z;l/z is the OT map between ®; (-; %) and @y, ( Idk>-



e Three versions of Sklar’s Theorem

e For di= dy = 1, the Sklar's theorem states that

F (y1,92) = C(F1(y1), F2(y2)) - (3)

e The above expression is equivalent to

fwy2) = filyr) fa(y2)e(Fi(y1), F2(y2)) or (4)
Pr (A1 X Ay) = Po(F1(A1) X F2(Az)) (5)

for any collection (A1, Ap), where Ay is a Borel subset of V;.. Here Pp
is the probability measure induced by C.

— For any Ay = (—o0, yg], F ((—o0,yx]) = (0, Fi (yr)].



e Vector Sklar Theorem (i) Given P, there exists a unique vector copula C
such that for any collection (A1, Ap), where Ay is a Borel subset of Y,

P (A1 x Ag) = Po (Ty (A1) x Ty (Az)), (6)
and for all Borel sets By, By in U1, U>,
Po (B1 X Ba) = P(T1(B1) X T2 (B2)) - (7)

— The vector copula of P is the joint distribution of (Tl_ (Y1),T, (Y2))
for (Yl, YQ) ~ P.

— Since Ty #Py, = py, the vector copula of P measures the rank de-
pendence between Y7 and Y5.

e Vector Sklar Theorem (ii) For any vector copula C' and any distributions
Py, on R% with (generalized) vector quantiles T}, (6) defines a distribution
on R x R% with marginals P;, and vector copula C.



e The Vector Sklar theorem extends Sklar's theorem (5).

e A direct extension of Sklar's theorem (3) would be
F (y1,52) = C (Ty (1), Ty (32))?
— Let A, = (—o00,yi], yx € R%. (6) implies that

F(y1,42) = C (T1 (A1), Ty (42))
but in general T} (Ag) # (0,7, (yx)] when dj, > 1.



e Thanks to the Monge Ampére Equation,
1
e (T (ug))

we obtain the following extension of Sklar's theorem (4):

det (DT}, (ug)) =

2
fy1,92) = [H fr (vk) C(Tf(yl),T{(yz))- (8)
k=1

e (8) offers a unified approach to constructing and estimating semiparamet-
ric multivariate distributions with prespecified multivariate marginals and
parametric vector copulas

— need parametric families of vector copulas (Gaussian, Archimedean,...)
but more are needed!



Gaussian Vector Copula. Let (Y7,Y3) ~ ®;4(-;X), where d = dy + dp
and 2 = ( X1 21 ) > ;. > 0. The Gaussian vector copula is

251 2o
CY (ug, ug; Q) = &4 (Vapyy (u1), Vibia (u2) 1 Q), (9)
where
Vipig (ug) = @ Huy) = ("’_1(%1), oy ¢_1(dek)) and
O ( Lq, 21_1/221222_1/2 ) (10)
= —1/2 1/2
WA XD 3 Iy,

When di = dp = 1, CC%(ug, us; Q) = (/Gaussian (w1, us; p), where
p =1/ (T1%0)Y2.



e Proof: The vector copula is the distribution function of (Tl_ (Y1),T, (Yz)),
where T, := Va7, o Vb3,

Vibly (ug) = S(up) and Vs, = ¥, 2

Since (21_1/25/1, 22_1/2Y2> ~ &4 (+;Q), we obtain that

CY% (ug, up; Q)
= Pr(Ty (Y1) < ug, Ty (Y2) < up)

— Pr (vwfl (21‘1/ 2Y1> < uy, Vb, (z; 1/ 2Y2> < ug)

< Pr(Z VP < Vi (m), 55 V2Y2 < Vo (u2)
= (VY11 (u1), Vo (u2); Q).



Current Research

e Suppose a random sample {Y7;, Yo;}:* 1 is drawn from the pdf below for
some fg € O :

2
f(y1,92) = {H fi (i) | e (T5 (v1), T3 (v2): 60) ,
k=1

where T3~ is the vector rank of F, for k =1, 2.

e A two-step estimator of 6 is given by

@ — arg max
0cO

12 ~_ ~
- . '”C(T1 (Y1:), 15 (Yzq;):9> :
i—1

where fk:_ s a nonparametric estimator of 7T} .



— many candidates for fk_ are available in the OT literature,
— significant progress on computation has been made recently, but

— asymptotic theory for fk_ is less developed (Flamary et al 2019, Hutter
and Rigollet 2019, Harchaoui, Liu, and Pal (2020),...)



e Under regularity conditions,

\/ﬁ(g — 90)

) 1

~ {i > Diine(Ty (Y1), Ty (Yai); 90)]
i=1

X {\;ﬁzil Dylnec (T (Yii) Ty (Yas) 90)]

E{DjIne(Ty (Ya), Ty (Yas); 90>H_1

X {\/15;:1 Dylnc (fl_(ylz')afz_(y%); 90)]

Q



