Vector Copulas and Vector Sklar Theorem

Yanqin Fan and Marc Henry Department of Economics University of Washington and Penn State University

> January 30, 2021 PIHOT Kickoff Event

A Review of Copulas and Sklar's Theorem

- **Definition**: A copula is a multivariate distribution function with uniform marginals on [0, 1].
- Let $(Y_1, Y_2) \sim F$, a bivariate cdf with *continuous* marginals F_1, F_2 .
- Sklar's Theorem (i): Given F, there exists a unique copula C : [0, 1]² →
 [0, 1] such that

$$F(y_1, y_2) = C(F_1(y_1), F_2(y_2)), \text{ where}$$
$$C(u_1, u_2) = F(F_1^{-1}(u_1), F_2^{-1}(u_2)).$$
(1)

- The copula function in (1) is called the copula function of F or of (Y_1, Y_2) :

 $C(u_1, u_2) = \Pr(F_1(Y_1) \le u_1, F_2(Y_2) \le u_2).$

- Since $F_1(Y_1) \sim U[0,1]$ and $F_2(Y_2) \sim U[0,1]$, C characterizes rank dependence between Y_1 and Y_2 .
- Example: Let Φ_ρ denote the standard bivariate normal cdf with correlation coefficient ρ ∈ (0, 1). Then (1) yields the Gaussian copula:

$$C^{\text{Gaussian}}(u_1, u_2; \rho) = \Phi_{\rho} \left(\Phi^{-1}(u_1), \Phi^{-1}(u_2) \right).$$

 Sklar's Theorem (ii): For any copula C and any marginal cdfs F₁, F₂, C (F₁(y₁), F₂(y₂)) is a bivariate distribution function with marginals F₁, F₂ and copula C.

- Let
$$(U_1, U_2) \sim C$$
. Then
 $C(F_1(y_1), F_2(y_2)) = \Pr(F_1^{-1}(U_1) \leq y_1, F_2^{-1}(U_2) \leq y_2),$ (2)
where $F_1^{-1}(U_1) \sim F_1$ and $F_2^{-1}(U_2) \sim F_2.$

• **Example**: Let $F_1(y_1)$ be lognormal and $F_2(y_2)$ be χ^2_{ν} . Then

$$C^{\text{Gaussian}}(F_1(y_1), F_2(y_2); \rho) = \Phi_{\rho}\left(\Phi^{-1}(F_1(y_1)), \Phi^{-1}(F_2(y_2))\right)$$

is a bivariate cdf with lognormal and χ^2_{ν} marginals respectively and the Gaussian copula with parameter ρ .

 Let {C(u₁, u₂; θ) : θ ∈ Θ} denote a parametric family of copulas. Then {C(F₁(y₁), F₂(y₂); θ) : θ ∈ Θ} is a semiparametric family of bivariate cdfs with density function

$$f_1(y_1)f_2(y_2)c(F_1(y_1), F_2(y_2); \theta),$$

where c is the copula density function and $f_1(y_1), f_2(y_2)$ are pdfs of $F_1(y_1), F_2(y_2)$.

- Copulas provide a flexible approach to constructing semiparametric multivariate distributions
 - there exist rich classes of parametric copulas (Gaussian, Archimedean,...).

- Suppose a random sample {Y_{1i}, Y_{2i}}ⁿ_{i=1} is drawn from the pdf above for some θ₀ ∈ Θ.
- Estimation and inference can be done via either full MLE or two-step MLE (e.g. Genest and Rivest 2003; Chen and Fan, 2006a,b; Chen, Fan, and Tsyrennikov, 2006; Joe 1997, 2015)

$$\ln \mathcal{L}(f_1, f_2, \theta) = \sum_{i=1}^n \left[\ln f_1(Y_{1i}) + \ln f_2(Y_{2i}) \right] + \sum_{i=1}^n \ln c(F_1(Y_{1i}), F_2(Y_{2i}); \theta)$$

- needs to have estimators of the marginal cdfs and/or pdfs (empirical cdf, kernel, sieve estimates,...)
- Many empirical applications in Economics and Finance, see Fan and Patton (2014) for a review.

Vector Copulas and Vector Sklar Theorem

- Consider two random vectors Y₁ and Y₂ such that (Y₁, Y₂) ~ P (F), where P (F) denotes a probability measure (cdf) on ℝ^{d₁} × ℝ^{d₂} with absolutely continuous marginals P_k (F_k) on ℝ^{d_k} with support contained in a convex set Y_k for k = 1, 2.
- **Questions**: how to
 - characterize rank dependence between random vectors Y_1 and Y_2 ;
 - construct multivariate distributions with given multivariate marginals and rank dependence.

- Some existing proposals
 - copula impossibility result (e.g. Genest, 1995): the only copula C such that $C(F_1(y_1), F_2(y_2))$ defines a $(d_1 + d_2)$ -dimensional cdf with d_1 -dimensional marginal F_1 and d_2 -dimensional F_2 for all d_1 and d_2 such that $d_1 + d_2 \ge 3$, and for all F_1 and F_2 , is $C(u_1, u_2) = u_1u_2$.
 - linkage function: Li et al (1996) makes use of Knothe-Rosenblatt transform of F_k to define a linkage function analogously to a copula function. Unlike copulas, no known flexible parametric families of linkage functions are available.
- This talk introduces vector copulas and vector Sklar Theorem

- Definition: A vector copula C is defined as a joint distribution function on [0, 1]^d with uniform marginals μ_k on U_k ≡ [0, 1]^{d_k}, k = 1, 2, where d = d₁ + d₂.
- How to extract the vector copula from P(F)?
- When $d_1 = d_2 = 1$, we rely on *ranks/quantiles*
- For d_k > 1, we rely on (generalized) vector ranks/vector quantiles: Brenier maps between P_k and μ_k, see Chernozhukov et al. (2017)

- Brenier-McCann Theorem:
 - there exists a convex function $\psi_k : \mathcal{U}_k \to \mathbb{R} \cup \{+\infty\}$ such that $\nabla \psi_k \# \mu_k = P_k$. The function $\nabla \psi_k$ exists and is unique, μ_k -almost everywhere. $\nabla \psi_k$ is called the *vector quantile* of P_k .
 - there exists a convex function $\psi_k^* : \mathcal{Y}_k \to \mathbb{R} \cup \{+\infty\}$ such that $\nabla \psi_k^* \# P_k = \mu_k$. The function $\nabla \psi_k^*$ exists, is unique and equal to $\nabla \psi_k^{-1}$, P_k -almost everywhere. $\nabla \psi_k^*$ is called the *vector rank* of P_k .

• Generalized Vector Quantiles and Ranks

- Let ψ_{k,l}, l ≤ L for some finite integer L, be convex functions such that the following hold.
 - the map $T_k := \nabla \psi_{k,L} \circ \nabla \psi_{k,L-1} \circ \dots \circ \nabla \psi_{k,1}$ exists and satisfies $T_k \# \mu_k = P_k$. The map T_k is called *generalized vector quantile* associated with P_k .
 - the map $T_k^- := \nabla \psi_{k,1}^* \circ \nabla \psi_{k,2}^* \circ \ldots \circ \nabla \psi_{k,L}^*$ exists and satisfies $T_k^- \# P_k = \mu_k$. The map T_k^- is called *generalized vector rank* associated with P_k .
- By choosing L and $\psi_{k,l}$, $l \leq L$, we construct generalized vector quantile and rank with closed-form expressions.

• **Example.** Let $Y_k \sim \Phi_{d_k}(\cdot; \Sigma_k)$, where $\Sigma_k > 0$. The generalized Gaussian vector rank is

$$T_k^- = \nabla \psi_{1k}^* \circ \nabla \psi_{2k}^*,$$

where

-
$$\nabla \psi_{1k}^*(u_k) = \Phi(u_k)$$
, $u_k \in (0, 1)^{d_k}$, is the OT map between $\Phi_{d_k}(\cdot; I_{d_k})$
and μ_k ;

$$- \nabla \psi_{2k}^* \equiv \boldsymbol{\Sigma}_k^{-1/2} \text{ is the OT map between } \boldsymbol{\Phi}_{d_k}(\cdot; \boldsymbol{\Sigma}_k) \text{ and } \boldsymbol{\Phi}_{d_k}(\cdot; I_{d_k}).$$

- Three versions of Sklar's Theorem
- For $d_1 = d_2 = 1$, the Sklar's theorem states that

$$F(y_1, y_2) = C(F_1(y_1), F_2(y_2)).$$
(3)

• The above expression is equivalent to

$$f(y_1, y_2) = f_1(y_1)f_2(y_2)c(F_1(y_1), F_2(y_2))$$
 or (4)

$$P_F(A_1 \times A_2) = P_C(F_1(A_1) \times F_2(A_2))$$
(5)

for any collection (A_1, A_2) , where A_k is a Borel subset of \mathcal{Y}_k . Here P_C is the probability measure induced by C.

- For any
$$A_k = (-\infty, y_k]$$
, $F_k((-\infty, y_k]) = (0, F_k(y_k)]$.

• Vector Sklar Theorem (i) Given P, there exists a unique vector copula C such that for any collection (A_1, A_2) , where A_k is a Borel subset of \mathcal{Y}_k ,

$$P(A_1 \times A_2) = P_C(T_1^-(A_1) \times T_2^-(A_2)), \qquad (6)$$

and for all Borel sets B_1, B_2 in $\mathcal{U}_1, \mathcal{U}_2$,

$$P_C(B_1 \times B_2) = P(T_1(B_1) \times T_2(B_2)).$$
 (7)

- The vector copula of P is the joint distribution of $(T_1^-(Y_1), T_2^-(Y_2))$ for $(Y_1, Y_2) \sim P$.
- Since $T_k^- \# P_k = \mu_k$, the vector copula of P measures the rank dependence between Y_1 and Y_2 .
- Vector Sklar Theorem (ii) For any vector copula C and any distributions
 P_k on R^{d_k} with (generalized) vector quantiles T_k, (6) defines a distribution
 on R^{d₁} × R^{d₂} with marginals P_k and vector copula C.

- The Vector Sklar theorem extends Sklar's theorem (5).
- A direct extension of Sklar's theorem (3) would be

$$F(y_1, y_2) = C(T_1^-(y_1), T_2^-(y_2))?$$

- Let
$$A_k = (-\infty, y_k]$$
, $y_k \in \mathbb{R}^{d_k}$. (6) implies that
 $F(y_1, y_2) = C\left(T_1^-(A_1), T_2^-(A_2)\right)$
but in general $T_k^-(A_k) \neq (0, T_k^-(y_k)]$ when $d_k > 1$.

• Thanks to the Monge Ampère Equation,

$$\det \left(DT_k \left(u_k \right) \right) = \frac{1}{f_k \left(T_k \left(u_k \right) \right)},$$

we obtain the following extension of Sklar's theorem (4):

$$f(y_1, y_2) = \left[\prod_{k=1}^2 f_k(y_k)\right] c\left(T_1^-(y_1), T_2^-(y_2)\right).$$
(8)

- (8) offers a unified approach to constructing and estimating semiparametric multivariate distributions with prespecified multivariate marginals and parametric vector copulas
 - need parametric families of vector copulas (Gaussian, Archimedean,...)
 but more are needed!

• Gaussian Vector Copula. Let $(Y_1, Y_2) \sim \Phi_d(\cdot; \Sigma)$, where $d = d_1 + d_2$ and $\Sigma = \begin{pmatrix} \Sigma_1 & \Sigma_{12} \\ \Sigma_{21} & \Sigma_2 \end{pmatrix}$, $\Sigma_k > 0$. The Gaussian vector copula is $C^{Ga}(u_1, u_2; \Omega) = \Phi_d(\nabla \psi_{11}(u_1), \nabla \psi_{12}(u_2); \Omega)$, (9)

where

$$\nabla \psi_{1k} (u_k) = \Phi^{-1}(u_k) = \left(\Phi^{-1}(u_{k1}), \dots, \Phi^{-1}(u_{kd_k}) \right) \text{ and}$$
$$\Omega = \left(\begin{array}{cc} I_{d_1} & \Sigma_1^{-1/2} \Sigma_{12} \Sigma_2^{-1/2} \\ \Sigma_2^{-1/2} \Sigma_{21} \Sigma_1^{-1/2} & I_{d_2} \end{array} \right)$$
(10)

• When $d_1 = d_2 = 1$, $C^{Ga}(u_1, u_2; \Omega) = C^{Gaussian}(u_1, u_2; \rho)$, where $\rho = \Sigma_{12} / (\Sigma_1 \Sigma_2)^{1/2}$.

• **Proof:** The vector copula is the distribution function of $(T_1^-(Y_1), T_2^-(Y_2))$, where $T_{k}^{-} := \nabla \psi_{1k}^{*} \circ \nabla \psi_{2k}^{*}$, $\nabla \psi_{1k}^*(u_k) = \Phi(u_k) \text{ and } \nabla \psi_{2k}^* \equiv \Sigma_k^{-1/2}.$ Since $\left(\Sigma_1^{-1/2}Y_1, \Sigma_2^{-1/2}Y_2\right) \sim \Phi_d(\cdot; \Omega)$, we obtain that $C^{Ga}(u_1, u_2; \Omega)$ $= \Pr\left(T_{1}^{-}(Y_{1}) \leq u_{1}, T_{2}^{-}(Y_{2}) \leq u_{2}\right)$ $= \Pr\left(\nabla\psi_{11}^{*}\left(\Sigma_{1}^{-1/2}Y_{1}\right) \le u_{1}, \nabla\psi_{12}^{*}\left(\Sigma_{2}^{-1/2}Y_{2}\right) \le u_{2}\right)$ $\leq \Pr\left(\Sigma_{1}^{-1/2}Y_{1} \leq \nabla\psi_{11}(u_{1}), \Sigma_{2}^{-1/2}Y_{2} \leq \nabla\psi_{12}(u_{2})\right)$ $= \Phi_d (\nabla \psi_{11} (u_1), \nabla \psi_{12} (u_2); \Omega).$

Current Research

Suppose a random sample {Y_{1i}, Y_{2i}}ⁿ_{i=1} is drawn from the pdf below for some θ₀ ∈ Θ :

$$f(y_1, y_2) = \left[\prod_{k=1}^2 f_k(y_k)\right] c\left(T_1^-(y_1), T_2^-(y_2); \theta_0\right),$$

where T_k^- is the vector rank of F_k for k = 1, 2.

• A two-step estimator of θ_0 is given by

$$\widehat{\theta} = \arg \max_{\theta \in \Theta} \left[\frac{1}{n} \sum_{i=1}^{n} \ln c \left(\widehat{T}_{1}^{-}(Y_{1i}), \widehat{T}_{2}^{-}(Y_{2i}); \theta \right) \right],$$

where \hat{T}_k^- is a nonparametric estimator of T_k^- .

- many candidates for \widehat{T}_k^- are available in the OT literature,
- significant progress on computation has been made recently, but
- asymptotic theory for \hat{T}_k^- is less developed (Flamary et al 2019, Hutter and Rigollet 2019, Harchaoui, Liu, and Pal (2020),...)

• Under regularity conditions,

$$\begin{split} \sqrt{n} \left(\widehat{\theta} - \theta_{0} \right) &\approx \left[\frac{1}{n} \sum_{i=1}^{n} D_{\theta}^{2} \ln c \left(\widehat{T}_{1}^{-}(Y_{1i}), \widehat{T}_{2}^{-}(Y_{2i}); \theta_{0} \right) \right]^{-1} \\ &\times \left[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} D_{\theta} \ln c \left(\widehat{T}_{1}^{-}(Y_{1i}), \widehat{T}_{2}^{-}(Y_{2i}); \theta_{0} \right) \right] \\ &\approx \left[E \left\{ D_{\theta}^{2} \ln c \left(T_{1}^{-}(Y_{1i}), T_{2}^{-}(Y_{2i}); \theta_{0} \right) \right\} \right]^{-1} \\ &\times \left[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} D_{\theta} \ln c \left(\widehat{T}_{1}^{-}(Y_{1i}), \widehat{T}_{2}^{-}(Y_{2i}); \theta_{0} \right) \right] \\ &\implies \left[E \left\{ D_{\theta}^{2} \ln c \left(T_{1}^{-}(Y_{1i}), T_{2}^{-}(Y_{2i}); \theta_{0} \right) \right\} \right]^{-1} N \left(0, ??? \right)??? \end{split}$$