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A Review of Copulas and Sklar’s Theorem

• Definition: A copula is a multivariate distribution function with uniform
marginals on [0, 1].

• Let (Y1, Y2) ∼ F , a bivariate cdf with continuous marginals F1, F2.

• Sklar’s Theorem (i): Given F , there exists a unique copula C : [0, 1]2 →
[0, 1] such that

F (y1, y2) = C (F1(y1), F2(y2)) , where

C (u1, u2) = F
(
F−1

1 (u1) , F−1
2 (u2)

)
. (1)



— The copula function in (1) is called the copula function of F or of
(Y1, Y2):

C (u1, u2) = Pr (F1 (Y1) ≤ u1, F2 (Y2) ≤ u2) .

— Since F1 (Y1) ∼ U [0, 1] and F2 (Y2) ∼ U [0, 1] , C characterizes rank
dependence between Y1 and Y2.

• Example: Let Φρ denote the standard bivariate normal cdf with correlation
coeffi cient ρ ∈ (0, 1). Then (1) yields the Gaussian copula:

CGaussian (u1, u2; ρ) = Φρ
(

Φ−1(u1),Φ−1(u2)
)
.



• Sklar’s Theorem (ii): For any copula C and any marginal cdfs F1, F2,

C (F1(y1), F2(y2)) is a bivariate distribution function with marginals F1, F2

and copula C.

— Let (U1, U2) ∼ C. Then

C (F1(y1), F2(y2)) = Pr
(
F−1

1 (U1) ≤ y1, F
−1
2 (U2) ≤ y2

)
, (2)

where F−1
1 (U1) ∼ F1 and F

−1
2 (U2) ∼ F2.

• Example: Let F1(y1) be lognormal and F2(y2) be χ2
ν. Then

CGaussian (F1(y1), F2(y2); ρ) = Φρ
(

Φ−1(F1(y1)),Φ−1(F2(y2))
)

is a bivariate cdf with lognormal and χ2
ν marginals respectively and the

Gaussian copula with parameter ρ.



• Let {C(u1, u2; θ) : θ ∈ Θ} denote a parametric family of copulas. Then
{C(F1(y1), F2(y2); θ) : θ ∈ Θ} is a semiparametric family of bivariate
cdfs with density function

f1(y1)f2(y2)c(F1(y1), F2(y2); θ),

where c is the copula density function and f1(y1), f2(y2) are pdfs of
F1(y1), F2(y2).

• Copulas provide a flexible approach to constructing semiparametric multi-
variate distributions

— there exist rich classes of parametric copulas (Gaussian, Archimedean,...).



• Suppose a random sample {Y1i, Y2i}ni=1 is drawn from the pdf above for
some θ0 ∈ Θ.

• Estimation and inference can be done via either full MLE or two-step MLE
(e.g. Genest and Rivest 2003; Chen and Fan, 2006a,b; Chen, Fan, and
Tsyrennikov, 2006; Joe 1997, 2015)

lnL (f1, f2, θ) =
n∑
i=1

[ln f1(Y1i) + ln f2(Y2i)]+
n∑
i=1

ln c(F1(Y1i), F2(Y2i); θ)

— needs to have estimators of the marginal cdfs and/or pdfs (empirical
cdf, kernel, sieve estimates,...)

• Many empirical applications in Economics and Finance, see Fan and Patton
(2014) for a review.



Vector Copulas and Vector Sklar Theorem

• Consider two random vectors Y1 and Y2 such that (Y1, Y2) ∼ P (F ),
where P (F ) denotes a probabilty measure (cdf) on Rd1 × Rd2 with ab-
solutely continuous marginals Pk (Fk) on Rdk with support contained in
a convex set Yk for k = 1, 2.

• Questions: how to

— characterize rank dependence between random vectors Y1 and Y2;

— construct multivariate distributions with given multivariate marginals
and rank dependence.



• Some existing proposals

— copula impossibility result (e.g. Genest, 1995): the only copula C such
that C (F1 (y1) , F2 (y2)) defines a (d1 + d2)-dimensional cdf with d1-
dimensional marginal F1 and d2-dimensional F2 for all d1 and d2 such
that d1 + d2 ≥ 3, and for all F1 and F2, is C (u1, u2) = u1u2.

— linkage function: Li et al (1996) makes use of Knothe-Rosenblatt trans-
form of Fk to define a linkage function analogously to a copula func-
tion. Unlike copulas, no known flexible parametric families of linkage
functions are available.

• This talk introduces vector copulas and vector Sklar Theorem



• Definition: A vector copula C is defined as a joint distribution function
on [0, 1]d with uniform marginals µk on Uk ≡ [0, 1]dk , k = 1, 2, where
d = d1 + d2.

• How to extract the vector copula from P (F )?

• When d1 = d2 = 1, we rely on ranks/quantiles

• For dk > 1, we rely on (generalized) vector ranks/vector quantiles: Bre-
nier maps between Pk and µk, see Chernozhukov et al. (2017)



• Brenier-McCann Theorem:

— there exists a convex function ψk : Uk → R ∪ {+∞} such that
∇ψk#µk = Pk. The function ∇ψk exists and is unique, µk-almost
everywhere. ∇ψk is called the vector quantile of Pk.

— there exists a convex function ψ∗k : Yk → R ∪ {+∞} such that
∇ψ∗k#Pk = µk. The function ∇ψ∗k exists, is unique and equal to
∇ψ−1

k , Pk-almost everywhere. ∇ψ∗k is called the vector rank of Pk.



• Generalized Vector Quantiles and Ranks

• Let ψk,l, l ≤ L for some finite integer L, be convex functions such that
the following hold.

— the map Tk := ∇ψk,L ◦ ∇ψk,L−1 ◦ ... ◦ ∇ψk,1 exists and satis-
fies Tk#µk = Pk. The map Tk is called generalized vector quantile
associated with Pk.

— the map T−k := ∇ψ∗k,1◦∇ψ
∗
k,2◦...◦∇ψ

∗
k,L exists and satisfies T

−
k #Pk =

µk. The map T
−
k is called generalized vector rank associated with Pk.

• By choosing L and ψk,l, l ≤ L, we construct generalized vector quantile
and rank with closed-form expressions.



• Example. Let Yk ∼ Φdk (·; Σk), where Σk > 0. The generalized
Gaussian vector rank is

T−k = ∇ψ∗1k ◦ ∇ψ
∗
2k,

where

— ∇ψ∗1k (uk) = Φ(uk), uk ∈ (0, 1)dk, is the OT map betweenΦdk

(
·; Idk

)
and µk;

— ∇ψ∗2k ≡ Σ
−1/2
k is the OT map between Φdk (·; Σk) and Φdk

(
·; Idk

)
.



• Three versions of Sklar’s Theorem

• For d1= d2 = 1, the Sklar’s theorem states that

F (y1, y2) = C (F1(y1), F2(y2)) . (3)

• The above expression is equivalent to

f (y1, y2) = f1(y1)f2(y2)c(F1(y1), F2(y2)) or (4)

PF (A1 ×A2) = PC (F1 (A1)× F2 (A2)) (5)

for any collection (A1, A2), where Ak is a Borel subset of Yk. Here PC
is the probability measure induced by C.

— For any Ak = (−∞, yk], Fk ((−∞, yk]) = (0, Fk (yk)].



• Vector Sklar Theorem (i) Given P , there exists a unique vector copula C
such that for any collection (A1, A2), where Ak is a Borel subset of Yk,

P (A1 ×A2) = PC
(
T−1 (A1)× T−2 (A2)

)
, (6)

and for all Borel sets B1, B2 in U1,U2,

PC (B1 ×B2) = P (T1 (B1)× T2 (B2)) . (7)

— The vector copula of P is the joint distribution of
(
T−1 (Y1) , T−2 (Y2)

)
for (Y1, Y2) ∼ P .

— Since T−k #Pk = µk, the vector copula of P measures the rank de-
pendence between Y1 and Y2.

• Vector Sklar Theorem (ii) For any vector copula C and any distributions
Pk on Rdk with (generalized) vector quantiles Tk, (6) defines a distribution
on Rd1 × Rd2 with marginals Pk and vector copula C.



• The Vector Sklar theorem extends Sklar’s theorem (5).

• A direct extension of Sklar’s theorem (3) would be

F (y1, y2) = C
(
T−1 (y1), T−2 (y2)

)
?

— Let Ak = (−∞, yk], yk ∈ Rdk. (6) implies that

F (y1, y2) = C
(
T−1 (A1), T−2 (A2)

)
but in general T−k (Ak) 6= (0, T−k (yk)] when dk > 1.



• Thanks to the Monge Ampère Equation,

det (DTk (uk)) =
1

fk (Tk (uk))
,

we obtain the following extension of Sklar’s theorem (4):

f (y1, y2) =

 2∏
k=1

fk (yk)

 c (T−1 (y1), T−2 (y2)
)
. (8)

• (8) offers a unified approach to constructing and estimating semiparamet-
ric multivariate distributions with prespecified multivariate marginals and
parametric vector copulas

— need parametric families of vector copulas (Gaussian, Archimedean,...)
but more are needed!



• Gaussian Vector Copula. Let (Y1, Y2) ∼ Φd (·; Σ), where d = d1 + d2

and Σ =

(
Σ1 Σ12
Σ21 Σ2

)
, Σk > 0. The Gaussian vector copula is

CGa (u1, u2; Ω) = Φd (∇ψ11 (u1) ,∇ψ12 (u2) ; Ω) , (9)

where

∇ψ1k (uk) = Φ−1(uk) =
(

Φ−1(uk1), ...,Φ−1(ukdk)
)
and

Ω =

 Id1
Σ
−1/2
1 Σ12Σ

−1/2
2

Σ
−1/2
2 Σ21Σ

−1/2
1 Id2

 (10)

• When d1 = d2 = 1, CGa (u1, u2; Ω) = CGaussian (u1, u2; ρ), where
ρ = Σ12/ (Σ1Σ2)1/2 .



• Proof: The vector copula is the distribution function of
(
T−1 (Y1) , T−2 (Y2)

)
,

where T−k := ∇ψ∗1k ◦ ∇ψ
∗
2k,

∇ψ∗1k (uk) = Φ(uk) and ∇ψ∗2k ≡ Σ
−1/2
k .

Since
(

Σ
−1/2
1 Y1,Σ

−1/2
2 Y2

)
∼ Φd (·; Ω), we obtain that

CGa (u1, u2; Ω)

= Pr
(
T−1 (Y1) ≤ u1, T

−
2 (Y2) ≤ u2

)
= Pr

(
∇ψ∗11

(
Σ
−1/2
1 Y1

)
≤ u1,∇ψ∗12

(
Σ
−1/2
2 Y2

)
≤ u2

)
≤ Pr

(
Σ
−1/2
1 Y1 ≤ ∇ψ11 (u1) ,Σ

−1/2
2 Y2 ≤ ∇ψ12 (u2)

)
= Φd (∇ψ11 (u1) ,∇ψ12 (u2) ; Ω) .



Current Research

• Suppose a random sample {Y1i, Y2i}ni=1 is drawn from the pdf below for
some θ0 ∈ Θ :

f (y1, y2) =

 2∏
k=1

fk (yk)

 c (T−1 (y1), T−2 (y2); θ0

)
,

where T−k is the vector rank of Fk for k = 1, 2.

• A two-step estimator of θ0 is given by

θ̂ = arg max
θ∈Θ

1

n

n∑
i=1

ln c
(
T̂−1 (Y1i), T̂

−
2 (Y2i); θ

) ,
where T̂−k is a nonparametric estimator of T−k .



— many candidates for T̂−k are available in the OT literature,

— significant progress on computation has been made recently, but

— asymptotic theory for T̂−k is less developed (Flamary et al 2019, Hutter
and Rigollet 2019, Harchaoui, Liu, and Pal (2020),...)



• Under regularity conditions,

√
n
(
θ̂ − θ0

)
≈

1

n

n∑
i=1

D2
θ ln c

(
T̂−1 (Y1i), T̂

−
2 (Y2i); θ0

)−1

×

 1
√
n

n∑
i=1

Dθ ln c
(
T̂−1 (Y1i), T̂

−
2 (Y2i); θ0

)
≈

[
E
{
D2
θ ln c

(
T−1 (Y1i), T

−
2 (Y2i); θ0

)}]−1

×

 1
√
n

n∑
i=1

Dθ ln c
(
T̂−1 (Y1i), T̂

−
2 (Y2i); θ0

)
=⇒

[
E
{
D2
θ ln c

(
T−1 (Y1i), T

−
2 (Y2i); θ0

)}]−1
N (0, ???)???


