On the quality of the ABC-solutions

Solaleh Bolvardizadeh University of Lethbridge

November 2022

On the quality of the ABC-solutions

Solaleh Bolvardizadeh

Outline

- Introduction to the ABC-conjecture
- The quality of the *ABC*-solutions formed by the terms in Lucas sequences and associated Lucas sequences
- A new family of the *ABC*-solutions with quality > 1
- Laishram and Shorey's work on an explicit version of the *ABC*-conjecture
- Brocard-Ramanujan problem and proving Erdős conjecture under an explicit version of the ABC-conjecture

Joseph Oesterlé

David W. Masser

Definition

A triplet (a, b, c) is called an *ABC*-solution if gcd(a, b, c) = 1 and

a+b=c.

Definition

For an integer M let

$$\operatorname{rad}(M) = \prod_{p \mid M} p,$$

where *p* runs through the distinct prime factors of *M*. Set rad(1) = 1.

• **Example:** rad(24) = 6.

Definition

For an integer M let

$$\operatorname{rad}(M) = \prod_{p \mid M} p,$$

where *p* runs through the distinct prime factors of *M*. Set rad(1) = 1.

• Example:
$$rad(24) = 6$$
.

The quality of an ABC-solutions

Definition

The *quality* of an *ABC*-solution, (a, b, c) is defined as

$$q(a, b, c) = \frac{\max\left\{\log|a|, \log|b|, \log|c|\right\}}{\log\left(\operatorname{rad}(|abc|)\right)}$$

The polynomial case

Definition

Let P_1 , P_2 , and P_3 be three coprime polynomials in $\mathbb{C}[x]$ satisfying $P_1 + P_2 = P_3$. The quality of (P_1, P_2, P_3) is defined as

$$q(P_1, P_2, P_3) = \frac{\max \{ \deg P_1, \deg P_2, \deg P_3 \}}{\deg \operatorname{rad}(P_1 P_2 P_3)}$$

Mason's Theorem

Theorem (Mason - 1984)

Let P_1 , P_2 , and P_3 be three coprime polynomials in $\mathbb{C}[x]$, not all of them constant, satisfying $P_1 + P_2 = P_3$. Then,

 $q(P_1, P_2, P_3) < 1.$

Question

Question

Is 1 upper bound for the quality of *ABC*-solutions in \mathbb{Z} ?

Lemma For $k \ge 1$, $q(1, 3^{2^k} - 1, 3^{2^k}) > 1$.

On the quality of the ABC-solutions

Solaleh Bolvardizadeh

Question

Question

Is 1 upper bound for the quality of *ABC*-solutions in \mathbb{Z} ?

Lemma

For
$$k \geq 1$$
,

$$q(1, 3^{2^k} - 1, 3^{2^k}) > 1.$$

Examples

ABC-solution	Quality
$2 + 3^{10} \cdot 109 = 23^5$	1.62991
$11^2 + 3^2 \cdot 5^6 \cdot 7^3 = 2^{21} \cdot 23$	1.62599
$19 \cdot 1307 + 7 \cdot 29^2 \cdot 31^8 = 2^8 \cdot 3^{22} \cdot 5^4$	1.62349
$283 + 5^{11} \cdot 13^2 = 2^8 \cdot 3^8 \cdot 17^3$	1.58076
$1+2\cdot 3^7=5^4\cdot 7$	1.56789

● *ABC*-solutions with quality ≥ 1.4 are called good *ABC*-solutions.

Examples

ABC-solution	Quality
$2 + 3^{10} \cdot 109 = 23^5$	1.62991
$11^2 + 3^2 \cdot 5^6 \cdot 7^3 = 2^{21} \cdot 23$	1.62599
$19 \cdot 1307 + 7 \cdot 29^2 \cdot 31^8 = 2^8 \cdot 3^{22} \cdot 5^4$	1.62349
$283 + 5^{11} \cdot 13^2 = 2^8 \cdot 3^8 \cdot 17^3$	1.58076
$1+2\cdot 3^7=5^4\cdot 7$	1.56789

● *ABC*-solutions with quality ≥ 1.4 are called good *ABC*-solutions.

The ABC-conjecture

Conjecture (Masser-Oesterlé, 1985)

Let $\epsilon > 0$. Then, there exist only finitely many *ABC*-solutions with the quality $\geq 1 + \epsilon$.

Another formulation for the ABC-conjecture

Conjecture (Masser-Oesterlé, 1985)

For any $\epsilon > 0$, there exists $K_{\epsilon} > 0$ such that,

$$\max\{|a|, |b|, |c|\} \le K_{\epsilon}(\operatorname{rad}(|abc|))^{1+\epsilon}$$

for all the *ABC*-solutions (a, b, c).

Lucas sequences and associated Lucas sequences

Definition

Let *P* and *Q* be two coprime integers with the property that the equation $x^2 - Px + Q = 0$ has two roots α and β . Define

$$u_m = rac{lpha^m - eta^m}{lpha - eta}$$
 and $v_m = lpha^m + eta^m$

for $m \ge 0$. The sequence $u = \{u_m\}_{m=0}^{\infty}$ and $v = \{v_m\}_{m=0}^{\infty}$ are called, respectively, the Lucas sequence and the associated Lucas sequence corresponding to the pair (P, Q).

Here is a table of Lucas sequences and associated Lucas sequences corresponding to the pair (1, -1).

т	<i>u_m</i> (Fibonacci numbers)	v_m (Lucas numbers)
0	0	2
1	1	1
2	1	3
3	2	4
4	3	7
5	5	11

Recall

Definition

The *quality* of an *ABC*-solution, (a, b, c) is defined as

$$q(a, b, c) = \frac{\max\left\{\log|a|, \log|b|, \log|c|\right\}}{\log\left(\operatorname{rad}(|abc|)\right)}$$

Relations in Lucas sequences and associated Lucas sequences

Lemma

Let $u = \{u_m\}_{m=0}^{\infty}$ and $v = \{v_m\}_{m=0}^{\infty}$ be the Lucas sequence and the associated Lucas sequence corresponding to the pair (P, Q). Then,

$$u_m^2 = u_{m-1}u_{m+1} + Q^{m-2}$$

and

$$v_m^2 = Du_m^2 + 4Q^m,$$

where $D = P^2 - 4Q$.

Relations in Lucas sequences and associated Lucas sequences

Lemma

Let $u = \{u_m\}_{m=0}^{\infty}$ and $v = \{v_m\}_{m=0}^{\infty}$ be the Lucas sequence and the associated Lucas sequence corresponding to the pair (P,Q). Then,

$$u_m^2 = u_{m-1}u_{m+1} + Q^{m-1}$$

and

$$v_m^2 = Du_m^2 + 4Q^m,$$

where $D = P^2 - 4Q$.

The quality of the triplet $(u_m^2, u_{m-1}u_{m+1}, Q^{m-1})$

Consider the Lucas sequence corresponding to the pair (1, -2).

т	$q(u_m^2, u_{m-1}u_{m+1}, Q^{m-1})$
29	0.658658188587
30	0.658936760063
31	0.659196603086
32	0.659439544838
33	0.659667182403
34	0.659880917741

The quality of the triplet $(u_m^2, u_{m-1}u_{m+1}, Q^{m-1})$

Theorem (B. 2022)

Assume the ABC-conjecture. Let $u = \{u_m\}_{m=0}^{\infty}$ be a Lucas sequence corresponding to the pair (P, Q) with gcd(P, Q) = 1 and D > 0. Then,

$$\lim_{m \to \infty} q(u_m^2, u_{m-1}u_{m+1}, Q^{m-1}) = \frac{2}{3}$$

Form the identity

$$\frac{1}{q} = \frac{\log \operatorname{rad}(|u_{m-1}u_m u_{m+1}Q|)}{\max\{\log |u_m^2|, \log |u_{m-1}u_{m+1}|, \log |Q^{m-1}|\}}.$$

Let

$$A = \prod_{p^{\alpha} \mid \mid \gamma(\mid u_{m-1}u_m u_{m+1}Q \mid)} p^{\alpha-1}$$

Using properties of Lucas sequences we get

$$\lim_{m \to \infty} \frac{1}{q} = \frac{3}{2} - \lim_{m \to \infty} \frac{\log A}{\log |u_m^2|}$$

Form the identity

$$\frac{1}{q} = \frac{\log \operatorname{rad}(|u_{m-1}u_m u_{m+1}Q|)}{\max\{\log |u_m^2|, \log |u_{m-1}u_{m+1}|, \log |Q^{m-1}|\}}.$$

Let

$$A = \prod_{p^{\alpha} \mid \mid \gamma(\mid u_{m-1}u_mu_{m+1}Q \mid)} p^{\alpha-1}$$

Using properties of Lucas sequences we get

$$\lim_{m \to \infty} \frac{1}{q} = \frac{3}{2} - \lim_{m \to \infty} \frac{\log A}{\log |u_m^2|}$$

Form the identity

$$\frac{1}{q} = \frac{\log \operatorname{rad}(|u_{m-1}u_m u_{m+1}Q|)}{\max\{\log |u_m^2|, \log |u_{m-1}u_{m+1}|, \log |Q^{m-1}|\}}.$$

Let

$$A = \prod_{p^{\alpha} \mid \mid \gamma(|u_{m-1}u_mu_{m+1}Q|)} p^{\alpha-1}$$

Using properties of Lucas sequences we get

$$\lim_{m \to \infty} \frac{1}{q} = \frac{3}{2} - \lim_{m \to \infty} \frac{\log A}{\log |u_m^2|}$$

• Under the *ABC*-conjecture we have

$$\gamma(u_m) \ll_{\epsilon,|D|,|Q|} u_m^{\epsilon}.$$

• $\lim_{m\to\infty} \frac{\log A}{\log |u_m^2|} = 0.$

• Under the *ABC*-conjecture we have

$$\gamma(u_m) \ll_{\epsilon,|D|,|Q|} u_m^{\epsilon}.$$

•
$$\lim_{m\to\infty} \frac{\log A}{\log |u_m^2|} = 0.$$

The quality of the triplet $(v_m^2, Du_m^2, 4Q^m)$

Consider the Lucas sequence and associated Lucas sequence corresponding to the pair (1, -2).

т	$q(v_m^2, Du_m^2, 4Q^m)$
27	1.0747313984
28	0.982456140539
29	0.983050847549
30	1.05091491125
31	0.984126984148
32	0.984615384626
33	1.00894232463

Theorem (B. 2022)

Assume the ABC-conjecture. Let $u = \{u_m\}_{m=0}^{\infty}$ and $v = \{v_m\}_{m=0}^{\infty}$ be a Lucas sequence and an associated Lucas sequence corresponding to the pair (P, Q), where gcd(P, Q) = 1 and D > 0. Then,

$$\lim_{m \to \infty} q(v_m^2, Du_m^2, 4Q^m) = 1$$

when $(v_m^2, Du_m^2, 4Q^m)$ is an ABC-solution and

$$\lim_{m\to\infty}q(v_m^2/4,Du_m^2/4,Q^m)=1$$

when $(v_m^2/4, Du_m^2/4, Q^m)$ is an ABC-solution.

A new family of *ABC*-solutions with quality > 1

Theorem (B. 2022)

Let $u = \{u_m\}_{m=0}^{\infty}$ and $v = \{v_m\}_{m=0}^{\infty}$ be the Lucas sequence and the associated Lucas sequence corresponding to the pair (P,Q), with an odd discriminant. If $Q = -2^{\alpha}$, where $\alpha \ge 0$ or Q is a negative square-full odd integer, then either

$$q(v_m^2, Du_m^2, 4Q^m) > 1$$

or

$$q(v_m^2/4, Du_m^2/4, Q^m) > 1,$$

where m = (2k + 1) rad D for k > 0.

Key Lemma

Lemma

Let $u = \{u_m\}_{m=0}^{\infty}$ be the Lucas sequence corresponding to the pair (P, Q). Then,

 $\operatorname{rad}(D)|u_{\operatorname{rad}(D)},$

where D is the discriminant of u.

Some examples

(P,Q)	rad <i>D</i>	ABC-solution	quality
(1, -2)	3	32 + 49 = 81	1.17
(3, -4)	5	1046529 + 4096 = 1050625	1.071
(1, -1)	5	121 + 4 = 125	1.027
$(9, -23^2)$	13	a+b=c	1.013

where $a = (3^2 \cdot 79 \cdot 131 \cdot 313 \cdot 1301 \cdot 165352513)^2$, $b = 2^2 \cdot 23^{26}$, and $c = 13^3 \cdot (13 \cdot 53 \cdot 591553 \cdot 332494553)^2$.

Transfer method

Lemma

Let (a, b, c) be an ABC-solution with the quality > 1. Then,

$$(b-a)^2 + 4ab = c^2$$

and the quality of this ABC-solution is greater than 1.

Transfer methods

From

$$32 + 49 = 81$$

we can build

$$17^2 + 2^7 \cdot 7^2 = 3^8$$

which is an *ABC*-solution with quality 1.337.

Notation

• For any *ABC*-solution (a, b, c) set N = rad(abc).

We also show the number of distinc prime factors of N with ω. Example: N = 24 = 2³ · 3, ω = 2.

Notation

- For any *ABC*-solution (a, b, c) set N = rad(abc).
- We also show the number of distinc prime factors of N with ω.
 Example: N = 24 = 2³ · 3, ω = 2.

Explicit ABC-conjecture

Conjecture (A. Baker, 2004)

Let a, b, and c be positive coprime integers satisfying

$$a+b=c$$

Then,

$$c < \frac{6}{5}N\frac{(\log N)^{\omega}}{\omega!},$$

where $N = \operatorname{rad}(abc)$ and $\omega = \omega(N)$.

Explicit ABC-conjecture

We can show that for given $\epsilon > 0$ there exists a constant $K_{\epsilon} > 0$, such that

$$\frac{(\log N)^{\omega}}{\omega!} < K_{\epsilon} N^{\epsilon},$$

where $\omega = \omega(N)$.

Laishram and Shorey's work (2012)

• Assuming Baker's explicit version they showed that for $\epsilon=0.75$ we have

$$\frac{6(\log N)^{\omega}}{5 \;\omega!} < N^{0.75},$$

for all integers N.

- Therefore, q(a, b, c) < 1 + 0.75 for any *ABC*-solution where *a*, *b*, and *c* are three positive coprime integers and N = rad(abc).
- In 2013, Silva reduced ϵ to $\epsilon = 0.738$ by generalizing their method.

Laishram and Shorey's work (2012)

• Assuming Baker's explicit version they showed that for $\epsilon=0.75$ we have

$$\frac{6(\log N)^{\omega}}{5 \;\omega!} < N^{0.75},$$

for all integers N.

- Therefore, q(a, b, c) < 1 + 0.75 for any *ABC*-solution where *a*, *b*, and *c* are three positive coprime integers and N = rad(abc).
- In 2013, Silva reduced ε to ε = 0.738 by generalizing their method.

Laishram and Shorey's work (2012)

• Assuming Baker's explicit version they showed that for $\epsilon=0.75$ we have

$$\frac{6(\log N)^{\omega}}{5 \;\omega!} < N^{0.75},$$

for all integers N.

- Therefore, q(a, b, c) < 1 + 0.75 for any *ABC*-solution where *a*, *b*, and *c* are three positive coprime integers and N = rad(abc).
- In 2013, Silva reduced ϵ to $\epsilon = 0.738$ by generalizing their method.

Refinement on Laishram and Shorey's work

Theorem (B. 2022)

Assume the explicit *ABC*-conjecture. Let a, b, and c be three positive coprime integers satisfying a + b = c and set rad(abc) = N. Then,

 $c < N^{1.71}$.

Brocard-Ramanujan problem

Question

Are there more solutions to

$$n! + 1 = m^2$$

except (n,m) = (4,5), (5,11), (7,71)?

• Erdős conjectured that these are the only solutions.

- A joint work of Berndt and Galway shows that up to n < 10⁹ these are the only solutions.
- In 1993, Overholt proved the finiteness of the solutions assuming the *ABC*-conjecture but his results does not provide an explicit upper bound on *n* or *m*.

- Erdős conjectured that these are the only solutions.
- A joint work of Berndt and Galway shows that up to n < 10⁹ these are the only solutions.
- In 1993, Overholt proved the finiteness of the solutions assuming the *ABC*-conjecture but his results does not provide an explicit upper bound on *n* or *m*.

- Erdős conjectured that these are the only solutions.
- A joint work of Berndt and Galway shows that up to n < 10⁹ these are the only solutions.
- In 1993, Overholt proved the finiteness of the solutions assuming the *ABC*-conjecture but his results does not provide an explicit upper bound on *n* or *m*.

Theorem (B. 2022)

Under the explicit *ABC*-conjecture, the pairs (4,5), (5,11), and (7,71) are the only solutions to $n! + 1 = m^2$.

Lemma (Chebyshev's upper bound)

For any integer n,

$$\operatorname{rad}(n!) = \prod_{p \le n} p$$

and

$$\prod_{p\leq n}p<4^n.$$

Lemma (Stirling's lower bound)

For any integer n,

$$\sqrt{2\pi n}(n/e)^n e^{1/12n+1} \le n!.$$

Lemma (Chebyshev's upper bound)

For any integer n,

$$\operatorname{rad}(n!) = \prod_{p \le n} p$$

and

$$\prod_{p\leq n}p<4^n.$$

Lemma (Stirling's lower bound)

For any integer n,

$$\sqrt{2\pi n}(n/e)^n e^{1/12n+1} \le n!.$$

Thank you for listening !