
Setting

(X , d) a σ-compact metric space, B its Borel σ-algebra.

All
measures will be Borel probability measures on σ-compact metric
spaces.

Weak-* will mean the weak-* topology on Borel measures of total
variation at most 1. This is a subset of the dual space of
(C0(X ), ‖ · ‖sup). It is compact and metrizable.
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Mixing for Z-actions

Definition
Let (X ,B, µ,T ) be a Borel probability measure preserving system.
We say that it is mixing if for every A,B ∈ B,

lim
n→∞

µ(A ∩ T−nB) = µ(A)µ(B)

Equivalently:

I for every f , g ∈ L2(µ) we have

lim
n→∞

∫
X
f (x)g(T nx)dµ(x) =

∫
fdµ

∫
gdµ.

I Un
T converges in the weak operator topology to integration

against constant functions

I The sequence of measures (id × T n)∗µ converge in the
weak-* topology to µ⊗ µ.



Mixing for Z-actions

Definition
Let (X ,B, µ,T ) be a Borel probability measure preserving system.
We say that it is mixing if for every A,B ∈ B,

lim
n→∞

µ(A ∩ T−nB) = µ(A)µ(B)

Equivalently:

I for every f , g ∈ L2(µ) we have

lim
n→∞

∫
X
f (x)g(T nx)dµ(x) =

∫
fdµ

∫
gdµ.

I Un
T converges in the weak operator topology to integration

against constant functions

I The sequence of measures (id × T n)∗µ converge in the
weak-* topology to µ⊗ µ.



Mixing for Z-actions

Definition
Let (X ,B, µ,T ) be a Borel probability measure preserving system.
We say that it is mixing if for every A,B ∈ B,

lim
n→∞

µ(A ∩ T−nB) = µ(A)µ(B)

Equivalently:

I for every f , g ∈ L2(µ) we have

lim
n→∞

∫
X
f (x)g(T nx)dµ(x) =

∫
fdµ

∫
gdµ.

I Un
T converges in the weak operator topology to integration

against constant functions

I The sequence of measures (id × T n)∗µ converge in the
weak-* topology to µ⊗ µ.



Mixing for Z-actions

Definition
Let (X ,B, µ,T ) be a Borel probability measure preserving system.
We say that it is mixing if for every A,B ∈ B,

lim
n→∞

µ(A ∩ T−nB) = µ(A)µ(B)

Equivalently:

I for every f , g ∈ L2(µ) we have

lim
n→∞

∫
X
f (x)g(T nx)dµ(x) =

∫
fdµ

∫
gdµ.

I Un
T converges in the weak operator topology to integration

against constant functions

I The sequence of measures (id × T n)∗µ converge in the
weak-* topology to µ⊗ µ.



Definition
We say (X ,B, µ,T ) is mixing of order k if for every A1, ...,Ak ∈ B

lim
ni−nj→∞

µ(T−n1A1 ∩ ... ∩ T−nkAk) = µ(A1) · ... · µ(Ak).

Question
(Rokhlin) Does 2-mixing imply 3-mixing?
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Partial progress

1. True for Rank 1 systems (Kalikow)

2. True for finite rank systems (Ryzhikov)

3. True for systems with singular (with respect to Lebesgue)
spectral type (Host)

4. Follows from the Hopf argument
(Coudène-Hasselblatt-Troubetzkoy).



Mixing for group actions

Let G be a completely metrizable topological group and for each
g ∈ G let Tg be a measure preserving map of (X , µ). Further
assume Tg1Tg2 = Tg1g2 .
We suppress the T from now on.

Definition
We say (X ,B, µ,G ) is mixing if for every A,B ∈ B we have

lim
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µ(A ∩ g−1B) = µ(A)µ(B).
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we have
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Theorem
(Ledrappier) When G = Z2, 2-mixing does not imply 3-mixing.

Theorem
(Mozes) When G = SL(2,R), 2-mixing implies mixing of all orders
and in particular 3-mixing.

Mozes proved this result in much larger generality. We present this
special case for concreteness
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Idea of proof that 2-mixing implies 3-mixing

(1) It suffice to show that if ~gn = (id , αn, βn) ∈ G 3 is a sequence
so that αn, βn, α

−1
n βn →∞ and (~gn)∗µ weak-*converges to a

measure σ then σ = µ⊗ µ⊗ µ.

(2) Let (Y , ν), (Z , η) be probability measure spaces, and τ be
coupling of them. If (Z , η,T ) is ergodic and τ is
(id × T )-invariant then τ = ν ⊗ η.

(3) Let σ be as in 1). Either σ is (id , φ, ψ)-invariant where
T : X × X by T (x , y) = (φx , ψy) is µ⊗ µ-ergodic OR σ is
(id , id , ψ) invariant where T = ψ acts ergodically on (X , µ).
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Proof of theorem

• By our assumption that the action of G is 2-mixing, the
projection of σ onto any two coordinates is µ⊗ µ.

• If σ is (id , id , ψ)-invariant, then applying (2) to
(Y , ν) = (X × X , µ⊗ µ) and (Z , η) = (X , µ) gives the theorem.

• If σ is (id , φ, ψ)-invariant then applying (2) to (Y , ν) = (X , µ)
and (Z , η) = (X × X , µ⊗ µ) gives the theorem.
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Justification of (1)

• Assume we have a sequence ~gn as in (1).

• By the compactness of measures with total variation at most 1,
we may choose a subsequence where (~gni )∗µ converges to
something.

• G is mixing iff this is automatically µ⊗ µ⊗ µ.
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Justification of (2)

Proposition

Let (Y , ν), (Z , η) be probability measure spaces, and τ be
coupling of them. If (Z , η,T ) is ergodic and τ is
(id × T )-invariant then τ = ν × η.

By disintegration of measures applied to projection onto Y , there
are probability measure τy so that τy ({y} × Z ) = 1 and∫
Y τydν = τ .

We may identify τy with measures τ̃y on Z and by assumption
these are T -invariant.
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Because the projection of τ onto Z is η,

we have η =
∫
Y τ̃ydν

where the τ̃y are T -invariant.

But η is an extreme point in the convex set of T -invariant
probability measures.

Thus τ̃y = η for ν-almost every y .

Finally, τ =
∫
Y τydν =

∫
Y (δy ⊗ η)dν = ν ⊗ η.
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Justification of (3) invariance prelimit

Lemma
(~gn)∗µ is (h, αnhα

−1
n , βnhβ

−1
n )-invariant for all n.

Let f ∈ Cc(X 3)∫
X 3

fd((~gn)∗µ) =

∫
X
f (x , αnx , βnx)dµ (1)

=

∫
X
f (hx , αnhx , βnhx)dµ. (2)

Observe that (h, αnhα
−1
n , βnhβ

−1
n )(id , αn, βn) = (hx , hαnx , hβnx).

This gives invariance: (h, αnhα
−1
n , βnhβ

−1
n ) changes one

description of (gn)∗µ to another.
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Justification of (3) invariance in the limit

Lemma
If (hn, αnhnα

−1
n , βnhnβ

−1
n ) converges to (θ, φ, ψ) then σ is

(θ, φ, ψ)-invariant.

Let f ∈ Cc(X 3) and F (x , y , z) = f (θx , φy , ψz) ∈ Cc(X 3).∫
X 3

fdσ = lim
n→∞

∫
X
f (x , αnx , βnx)dµ (3)
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∫
X
F (x , αnx , βnx)dµ (4)

=

∫
X 3

Fdσ (5)
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Looking for a limit A

Proposition

Assume that whenever gn ∈ SL(2,R) goes to infinity we have that
for any neighborhood of id, U and bounded set B,

gnUg
−1
n 6⊂ B

for all large n,

then there is a sequence hn ∈ SL(2,R so that

1. hn → id

2. max{‖αhnα−1n ‖, ‖βnhnβn‖−1} = 2

The proposition says that after passing to a subsequence, we may
assume σ is (θ, φ, ψ)-invariant with θ = id and at least one of φ, ψ
not equal to the identity.
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Proof of Proposition

Let Φn : SL(2,R)→ [1,∞) by

Φn(h) = max{‖αnhα
−1
n ‖, ‖βnhβn‖−1}.

• Φn is continuous.

• Under our assumption [1, 2] ⊂ Φn(U) for all large n.

• So for all large n we may choose hn ∈ U so that
max{‖αhnα−1n ‖, ‖βnhnβn‖−1} = 2.

• Choosing shrinking U we may assume hn → id .
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A little bit more

Lemma
φ and ψ have both eigenvalues 1 and in particular any non-identity
element has to be µ-mixing.

• hn → id means the eigenvalues of hn converge to 1.

• The eigenvalues of hn are the eigenvalues of αnhnα
−1
n and

βnhnβ
−1
n .

• Because eigenvalues change continuously the eigenvalues of φ
and ψ are 1.

• Because G is mixing, any element of G that generates an
unbounded subgroup is mixing.
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Looking for a limit B

Proposition

Whenever gn ∈ SL(2,R) goes to infinity we have that for any
neighborhood of id, U and bounded set B,

gnUg
−1
n 6⊂ B

for all large n.

This is a computation.



Doing the computation

Let gn =

(
an bn
cn dn

)
.

Observe gn

(
1 0
s 1

)
g−1n =

(
andn − ancns − bncn −anbn + a2ns + anbn
cndn − c2n s−cndn −bncn + ancns + andn

)
=

(
1− ancns a2ns
−c2n s 1 + ancns

)
.

For this to be bounded for all small s we need that an and cn are
bounded (in n).
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Doing the computation II

Similarly, gn

(
1 s
0 1
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g−1n =
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1 + bndn b2ns

d2
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)
.

For this to be bounded for all small s we need that bn and dn are
also bounded.

This contradicts that gn is unbounded.
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Recap of (3)

So σ is (id , φ, ψ)-invariant with at least one of φ, ψ 6= id .

If only
one is non-identity, it is mixing and thus ergodic and so we have
one option for (3).

Otherwise they are both mixing, so their product is ergodic and we
have the other option for (3).



Recap of (3)

So σ is (id , φ, ψ)-invariant with at least one of φ, ψ 6= id . If only
one is non-identity, it is mixing and thus ergodic and so we have
one option for (3).

Otherwise they are both mixing, so their product is ergodic and we
have the other option for (3).



Recap of (3)

So σ is (id , φ, ψ)-invariant with at least one of φ, ψ 6= id . If only
one is non-identity, it is mixing and thus ergodic and so we have
one option for (3).

Otherwise they are both mixing,

so their product is ergodic and we
have the other option for (3).



Recap of (3)

So σ is (id , φ, ψ)-invariant with at least one of φ, ψ 6= id . If only
one is non-identity, it is mixing and thus ergodic and so we have
one option for (3).

Otherwise they are both mixing, so their product is ergodic and we
have the other option for (3).


