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Setting

(X, d) a o-compact metric space, B its Borel o-algebra. All
measures will be Borel probability measures on o-compact metric
spaces.

Weak-* will mean the weak-* topology on Borel measures of total
variation at most 1. This is a subset of the dual space of
(Go(X), || - llsup)- It is compact and metrizable.
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We say that it is mixing if for every A, B € B,
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Mixing for Z-actions
Definition
Let (X, B, u, T) be a Borel probability measure preserving system.
We say that it is mixing if for every A, B € B,
lim (AN T~"B) = u(A)u(B)

n—o00

Equivalently:
» for every f,g € L%(u) we have

ILm /f(x (T"x)dp(x /fdu/gd,u

» U7 converges in the weak operator topology to integration
against constant functions

» The sequence of measures (id x T"),u converge in the
weak-* topology to u ® .



Definition
We say (X, B, i, T) is mixing of order k if for every A1, ...,Ax € B

lim /,L( T-"MAiN..N T_nkAk) = M(Al) ST ,U,(Ak)
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Definition
We say (X, B, i, T) is mixing of order k if for every A1, ...,Ax € B
lim /,L( T-"MAiN..N T_nkAk) = M(Al) ST ,U,(Ak)

n,'fnj%oo

Question
(Rokhlin) Does 2-mixing imply 3-mixing?



Partial progress

1. True for Rank 1 systems (Kalikow)
2. True for finite rank systems (Ryzhikov)

3. True for systems with singular (with respect to Lebesgue)
spectral type (Host)

4. Follows from the Hopf argument
(Coudeéne-Hasselblatt-Troubetzkoy).



Mixing for group actions

Let G be a completely metrizable topological group and for each
g € G let T be a measure preserving map of (X, u). Further

assume Tg Tg, = Tgg,-
We suppress the T from now on.
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Mixing for group actions

Let G be a completely metrizable topological group and for each
g € G let T be a measure preserving map of (X, u). Further

assume Tg Tg, = Tgg,-
We suppress the T from now on.

Definition
We say (X, B, i, G) is mixing if for every A, B € B we have

Jim (AN g~ B) = u(A)u(B).

Definition
We say (X, B, i1, G) is mixing of order k if for every A1, ..., Ax € B
we have

lim  p(g1AL N ... N gkAx) = pi(Ar)...(A).-

gig; —©
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Theorem

(Mozes) When G = SL(2,R), 2-mixing implies mixing of all orders
and in particular 3-mixing.

Mozes proved this result in much larger generality. We present this
special case for concreteness
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(1) It suffice to show that if &, = (id, an, 3,) € G is a sequence
so that ap, Bn, a; B, — 00 and (&)« weak-*converges to a
measure o then o = p ®@ © ® p.
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|dea of proof that 2-mixing implies 3-mixing

(1) It suffice to show that if &, = (id, an, 3,) € G is a sequence
so that ap, Bn, a; B, — 00 and (&)« weak-*converges to a
measure o then o = p ®@ © ® p.

(2) Let (Y,v), (Z,n) be probability measure spaces, and 7 be
coupling of them. If (Z,n, T) is ergodic and 7 is
(id x T)-invariant then 7 = v ® 1.

(3) Let o be as in 1). Either o is (id, ¢,)-invariant where
T: X xXby T(x,y) = (¢x,y) is u ® p-ergodic OR o is
(id, id, ) invariant where T = 1) acts ergodically on (X, u).
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Proof of theorem

e By our assumption that the action of G is 2-mixing, the
projection of ¢ onto any two coordinates is i ® p.

e If o is (id, id,1)-invariant, then applying (2) to
(Y,v)=(XxX,u®pu) and (Z,n) = (X, 1) gives the theorem.

e If o is (id, ¢,v)-invariant then applying (2) to (Y,v) = (X, u)
and (Z,n) = (X x X, u® p) gives the theorem.
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Justification of (1)

e Assume we have a sequence g, as in (1).

e By the compactness of measures with total variation at most 1,
we may choose a subsequence where (g}, )./t converges to
something.

e G is mixing iff this is automatically 4 ® p ® p.



Justification of (2)

Proposition

Let (Y,v), (Z,n) be probability measure spaces, and T be
coupling of them. If (Z,n, T) is ergodic and T is

(id x T)-invariant then T = v X 1.
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Justification of (2)

Proposition

Let (Y,v), (Z,n) be probability measure spaces, and T be
coupling of them. If (Z,n, T) is ergodic and T is

(id x T)-invariant then T = v X 1.

By disintegration of measures applied to projection onto Y, there
are probability measure 7, so that 7,({y} x Z) =1 and

Jy Tydv =1

We may identify 7, with measures 7, on Z and by assumption
these are T-invariant.



Because the projection of 7 onto Z is 7,
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Because the projection of 7 onto Z is 1, we have n = fy Tydv
where the 7, are T-invariant.

But 7 is an extreme point in the convex set of T-invariant
probability measures.

Thus 7, = n for v-almost every y.

Finally, 7 = [, nydv = [\, (6, @ n)dv =v @ .
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Justification of (3) invariance prelimit

Lemma
(&)« is (h, anha,t, B,hB, 1 )-invariant for all n.

Let f € C.(X3)

/ fd((g,,)*u) = / f(xa QpX, 5nX)dM (1)
X3 X
/x f(hx, anhx, Bnhx)dp. (2)

Observe that (h, a,ha;t, B,hB,1)(id, an, Br) = (hx, hanx, hBax).
This gives invariance: (h, a,ha,t, BohB; 1) changes one
description of (gn)« to another.



Justification of (3) invariance in the limit

Lemma
If (hp, anhpa,t, BahnBy ) converges to (6, ¢,1)) then o is
(0, ¢, )-invariant.



Justification of (3) invariance in the limit

Lemma
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Justification of (3) invariance in the limit

Lemma
If (hp, anhpa,t, BahnBy ) converges to (6, ¢,1)) then o is
(0, ¢, )-invariant.

Let £ € Co(X?) and F(x,y, 2) = F(0x, by, ¥2) € Co(X3).

fdo = lim /f(x,a,,x,,B,,x)d,u (3)
X

X3 n—oo

= lim /X F(x, anx, Bnx)dp (4)

n—oo

- /X Fdo (5)
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Looking for a limit A

Proposition
Assume that whenever g, € SL(2,R) goes to infinity we have that
for any neighborhood of id, U and bounded set B,

g.Ug, ' ¢ B

for all large n, then there is a sequence h, € SL(2,R so that
1. h, — id
2. max{“ahna;1||, ||/3nhnﬁn||71} =2
The proposition says that after passing to a subsequence, we may

assume o is (6, ¢, v)-invariant with § = id and at least one of ¢,
not equal to the identity.
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e &, is continuous.
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Proof of Proposition

Let &, : SL(2,R) — [1,00) by

®n(h) = max{||anha; |, 82hBal 7}

e &, is continuous.
e Under our assumption [1,2] C ®,(U) for all large n.

e So for all large n we may choose h, € U so that
max{[|ahna, M|, [|Babnfnl =1} = 2.

e Choosing shrinking U we may assume h, — id.
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A little bit more

Lemma
¢ and 1 have both eigenvalues 1 and in particular any non-identity
element has to be p-mixing.

e h, — id means the eigenvalues of h, converge to 1.

e The eigenvalues of h, are the eigenvalues of oz,,h,,a,jl and

Bahafy .

e Because eigenvalues change continuously the eigenvalues of ¢
and ) are 1.

e Because G is mixing, any element of G that generates an
unbounded subgroup is mixing.



Looking for a limit B

Proposition

Whenever g, € SL(2,R) goes to infinity we have that for any
neighborhood of id, U and bounded set B,

gnUg,' ¢ B

for all large n.

This is a computation.
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Doing the computation

Let g, = <‘Z: Z:) Observe g, <1 ?) g l=

and, — ancns — bpc, —apb, + a,2,s +anb, \
cpd, — c,%s—c,,d,, —byc, + ancps + and,

2
1 — a,cus a,s
2 .
—c;s 1+ ancps



Doing the computation

Let g, = <i: Z:) Observe g, <i (1)> g l=

and, — ancns — bpc, —apb, + a,2,s +anb, \
cpd, — c,%s—c,,d,, —byc, + ancps + and,

1 — a,cus a%s
—c,%s 1+ anchs/
For this to be bounded for all small s we need that a, and ¢, are
bounded (in n).



Doing the computation Il

Similarly, g, ((1) i) g 1=

1+ b,d, b2s
d,%s 1—b,dys)



Doing the computation I

Similarly, g, <é i) g 1=

1+ b,d, b2s
d,%s 1—b,dys)

For this to be bounded for all small s we need that b, and d, are
also bounded.



Doing the computation I

Similarly, g, <é i) g 1=

1+ b,d, b2s
d,%s 1—b,dys)

For this to be bounded for all small s we need that b, and d, are
also bounded.

This contradicts that g, is unbounded.
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Recap of (3)

So o is (id, ¢, v)-invariant with at least one of ¢, # id. If only
one is non-identity, it is mixing and thus ergodic and so we have
one option for (3).

Otherwise they are both mixing, so their product is ergodic and we
have the other option for (3).



