

(X, d) a σ -compact metric space, \mathcal{B} its Borel σ -algebra.

Setting

(X, d) a σ -compact metric space, \mathcal{B} its Borel σ -algebra. All measures will be Borel probability measures on σ -compact metric spaces.

*Weak-** will mean the weak-* topology on Borel measures of total variation at most 1. This is a subset of the dual space of $(C_0(X), \|\cdot\|_{sup})$. It is compact and metrizable.

Mixing for $\mathbb{Z}\text{-}actions$

Definition Let (X, \mathcal{B}, μ, T) be a Borel probability measure preserving system. We say that it is mixing if for every $A, B \in \mathcal{B}$,

$$\lim_{n\to\infty}\mu(A\cap T^{-n}B)=\mu(A)\mu(B)$$

Mixing for \mathbb{Z} -actions

Definition

Let (X, \mathcal{B}, μ, T) be a Borel probability measure preserving system. We say that it is mixing if for every $A, B \in \mathcal{B}$,

$$\lim_{n\to\infty}\mu(A\cap T^{-n}B)=\mu(A)\mu(B)$$

Equivalently:

▶ for every $f, g \in L^2(\mu)$ we have

$$\lim_{n\to\infty}\int_X f(x)g(T^n x)d\mu(x) = \int f d\mu \int g d\mu.$$

Mixing for \mathbb{Z} -actions

Definition

Let (X, \mathcal{B}, μ, T) be a Borel probability measure preserving system. We say that it is mixing if for every $A, B \in \mathcal{B}$,

$$\lim_{n\to\infty}\mu(A\cap T^{-n}B)=\mu(A)\mu(B)$$

Equivalently:

▶ for every $f,g \in L^2(\mu)$ we have

$$\lim_{n\to\infty}\int_X f(x)g(T^nx)d\mu(x)=\int fd\mu\int gd\mu.$$

 Uⁿ_T converges in the weak operator topology to integration against constant functions

Mixing for $\mathbb{Z}\text{-}actions$

Definition

Let (X, \mathcal{B}, μ, T) be a Borel probability measure preserving system. We say that it is mixing if for every $A, B \in \mathcal{B}$,

$$\lim_{n\to\infty}\mu(A\cap T^{-n}B)=\mu(A)\mu(B)$$

Equivalently:

▶ for every $f,g \in L^2(\mu)$ we have

$$\lim_{n\to\infty}\int_X f(x)g(T^nx)d\mu(x)=\int fd\mu\int gd\mu.$$

- Uⁿ_T converges in the weak operator topology to integration against constant functions
- ► The sequence of measures (id × Tⁿ)*µ converge in the weak-* topology to µ ⊗ µ.

Definition We say (X, \mathcal{B}, μ, T) is mixing of order k if for every $A_1, ..., A_k \in \mathcal{B}$ $\lim_{n_i - n_j \to \infty} \mu(T^{-n_1}A_1 \cap ... \cap T^{-n_k}A_k) = \mu(A_1) \cdot ... \cdot \mu(A_k).$

Definition We say (X, \mathcal{B}, μ, T) is mixing of order k if for every $A_1, ..., A_k \in \mathcal{B}$ $\lim_{n_i - n_j \to \infty} \mu(T^{-n_1}A_1 \cap ... \cap T^{-n_k}A_k) = \mu(A_1) \cdot ... \cdot \mu(A_k).$

Question (Rokhlin) Does 2-mixing imply 3-mixing?

Partial progress

- 1. True for Rank 1 systems (Kalikow)
- 2. True for finite rank systems (Ryzhikov)
- 3. True for systems with singular (with respect to Lebesgue) spectral type (Host)

4. Follows from the Hopf argument (Coudène-Hasselblatt-Troubetzkoy).

Mixing for group actions

Let G be a completely metrizable topological group and for each $g \in G$ let T_g be a measure preserving map of (X, μ) . Further assume $T_{g_1}T_{g_2} = T_{g_1g_2}$. We suppress the T from now on.

Definition

We say (X, \mathcal{B}, μ, G) is mixing if for every $A, B \in \mathcal{B}$ we have

$$\lim_{g\to\infty}\mu(A\cap g^{-1}B)=\mu(A)\mu(B).$$

Mixing for group actions

Let G be a completely metrizable topological group and for each $g \in G$ let T_g be a measure preserving map of (X, μ) . Further assume $T_{g_1}T_{g_2} = T_{g_1g_2}$. We suppress the T from now on.

Definition

We say (X, \mathcal{B}, μ, G) is mixing if for every $A, B \in \mathcal{B}$ we have

$$\lim_{g\to\infty}\mu(A\cap g^{-1}B)=\mu(A)\mu(B).$$

Definition

We say (X, \mathcal{B}, μ, G) is mixing of order k if for every $A_1, ..., A_k \in \mathcal{B}$ we have

$$\lim_{g_ig_j^{-1}\to\infty}\mu(g_1A_1\cap\ldots\cap g_kA_k)=\mu(A_1)...\mu(A_k).$$

Theorem (Ledrappier) When $G = \mathbb{Z}^2$, 2-mixing does not imply 3-mixing.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Ledrappier) When $G = \mathbb{Z}^2$, 2-mixing does not imply 3-mixing.

Theorem

(Mozes) When $G = SL(2, \mathbb{R})$, 2-mixing implies mixing of all orders and in particular 3-mixing.

Mozes proved this result in much larger generality. We present this special case for concreteness

Idea of proof that 2-mixing implies 3-mixing

(1) It suffice to show that if $\vec{g}_n = (id, \alpha_n, \beta_n) \in G^3$ is a sequence so that $\alpha_n, \beta_n, \alpha_n^{-1}\beta_n \to \infty$ and $(\vec{g}_n)_*\mu$ weak-*converges to a measure σ then $\sigma = \mu \otimes \mu \otimes \mu$.

Idea of proof that 2-mixing implies 3-mixing

(1) It suffice to show that if $\vec{g}_n = (id, \alpha_n, \beta_n) \in G^3$ is a sequence so that $\alpha_n, \beta_n, \alpha_n^{-1}\beta_n \to \infty$ and $(\vec{g}_n)_*\mu$ weak-*converges to a measure σ then $\sigma = \mu \otimes \mu \otimes \mu$.

(2) Let (Y, ν) , (Z, η) be probability measure spaces, and τ be coupling of them. If (Z, η, T) is ergodic and τ is $(id \times T)$ -invariant then $\tau = \nu \otimes \eta$.

Idea of proof that 2-mixing implies 3-mixing

(1) It suffice to show that if $\vec{g}_n = (id, \alpha_n, \beta_n) \in G^3$ is a sequence so that $\alpha_n, \beta_n, \alpha_n^{-1}\beta_n \to \infty$ and $(\vec{g}_n)_*\mu$ weak-*converges to a measure σ then $\sigma = \mu \otimes \mu \otimes \mu$.

(2) Let (Y, ν) , (Z, η) be probability measure spaces, and τ be coupling of them. If (Z, η, T) is ergodic and τ is $(id \times T)$ -invariant then $\tau = \nu \otimes \eta$.

(3) Let σ be as in 1). Either σ is (id, ϕ, ψ) -invariant where $T : X \times X$ by $T(x, y) = (\phi x, \psi y)$ is $\mu \otimes \mu$ -ergodic OR σ is (id, id, ψ) invariant where $T = \psi$ acts ergodically on (X, μ) .

Proof of theorem

• By our assumption that the action of G is 2-mixing, the projection of σ onto any two coordinates is $\mu \otimes \mu$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of theorem

• By our assumption that the action of G is 2-mixing, the projection of σ onto any two coordinates is $\mu \otimes \mu$.

• If σ is (id, id, ψ) -invariant, then applying (2) to $(Y, \nu) = (X \times X, \mu \otimes \mu)$ and $(Z, \eta) = (X, \mu)$ gives the theorem.

Proof of theorem

• By our assumption that the action of G is 2-mixing, the projection of σ onto any two coordinates is $\mu \otimes \mu$.

• If σ is (id, id, ψ) -invariant, then applying (2) to $(Y, \nu) = (X \times X, \mu \otimes \mu)$ and $(Z, \eta) = (X, \mu)$ gives the theorem.

• If σ is (id, ϕ, ψ) -invariant then applying (2) to $(Y, \nu) = (X, \mu)$ and $(Z, \eta) = (X \times X, \mu \otimes \mu)$ gives the theorem.

Justification of (1)

• Assume we have a sequence \vec{g}_n as in (1).

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Justification of (1)

• Assume we have a sequence \vec{g}_n as in (1).

• By the compactness of measures with total variation at most 1, we may choose a subsequence where $(\vec{g}_{n_i})_*\mu$ converges to something.

Justification of (1)

• Assume we have a sequence \vec{g}_n as in (1).

• By the compactness of measures with total variation at most 1, we may choose a subsequence where $(\vec{g}_{n_i})_*\mu$ converges to something.

• G is mixing iff this is automatically $\mu \otimes \mu \otimes \mu$.

Justification of (2)

Proposition

Let (Y, ν) , (Z, η) be probability measure spaces, and τ be coupling of them. If (Z, η, T) is ergodic and τ is $(id \times T)$ -invariant then $\tau = \nu \times \eta$.

Justification of (2)

Proposition

Let (Y, ν) , (Z, η) be probability measure spaces, and τ be coupling of them. If (Z, η, T) is ergodic and τ is $(id \times T)$ -invariant then $\tau = \nu \times \eta$.

By disintegration of measures applied to projection onto Y, there are probability measure τ_y so that $\tau_y(\{y\} \times Z) = 1$ and $\int_Y \tau_y d\nu = \tau$.

Justification of (2)

Proposition

Let (Y, ν) , (Z, η) be probability measure spaces, and τ be coupling of them. If (Z, η, T) is ergodic and τ is $(id \times T)$ -invariant then $\tau = \nu \times \eta$.

By disintegration of measures applied to projection onto Y, there are probability measure τ_y so that $\tau_y(\{y\} \times Z) = 1$ and $\int_Y \tau_y d\nu = \tau$. We may identify τ_y with measures $\tilde{\tau}_y$ on Z and by assumption

these are *T*-invariant.

Because the projection of τ onto Z is η ,

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

(ロ)、(型)、(E)、(E)、 E) の(の)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

But η is an extreme point in the convex set of *T*-invariant probability measures.

But η is an extreme point in the convex set of *T*-invariant probability measures.

Thus $\tilde{\tau}_y = \eta$ for ν -almost every y.

But η is an extreme point in the convex set of *T*-invariant probability measures.

Thus $\tilde{\tau}_y = \eta$ for ν -almost every y.

Finally, $\tau = \int_{\mathbf{Y}} \tau_y d\nu = \int_{\mathbf{Y}} (\delta_y \otimes \eta) d\nu = \nu \otimes \eta$.

Justification of (3) invariance prelimit

Lemma $(\vec{g}_n)_*\mu$ is $(h, \alpha_n h \alpha_n^{-1}, \beta_n h \beta_n^{-1})$ -invariant for all n.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Justification of (3) invariance prelimit

Lemma

 $(\vec{g}_n)_*\mu$ is $(h, \alpha_n h \alpha_n^{-1}, \beta_n h \beta_n^{-1})$ -invariant for all n. Let $f \in C_c(X^3)$

$$\int_{X^3} fd((\vec{g}_n)_*\mu) = \int_X f(x, \alpha_n x, \beta_n x) d\mu \qquad (1)$$
$$= \int_X f(hx, \alpha_n hx, \beta_n hx) d\mu. \qquad (2)$$

Justification of (3) invariance prelimit

Lemma

 $(\vec{g}_n)_*\mu$ is $(h, \alpha_n h \alpha_n^{-1}, \beta_n h \beta_n^{-1})$ -invariant for all n. Let $f \in C_c(X^3)$

$$\int_{X^3} fd((\vec{g}_n)_*\mu) = \int_X f(x, \alpha_n x, \beta_n x) d\mu \qquad (1)$$
$$= \int_X f(hx, \alpha_n hx, \beta_n hx) d\mu. \qquad (2)$$

Observe that $(h, \alpha_n h \alpha_n^{-1}, \beta_n h \beta_n^{-1})(id, \alpha_n, \beta_n) = (hx, h\alpha_n x, h\beta_n x)$. This gives invariance: $(h, \alpha_n h \alpha_n^{-1}, \beta_n h \beta_n^{-1})$ changes one description of $(g_n)_* \mu$ to another.

Justification of (3) invariance in the limit

Lemma

If $(h_n, \alpha_n h_n \alpha_n^{-1}, \beta_n h_n \beta_n^{-1})$ converges to (θ, ϕ, ψ) then σ is (θ, ϕ, ψ) -invariant.

Justification of (3) invariance in the limit

Lemma

If $(h_n, \alpha_n h_n \alpha_n^{-1}, \beta_n h_n \beta_n^{-1})$ converges to (θ, ϕ, ψ) then σ is (θ, ϕ, ψ) -invariant.

Let $f \in C_c(X^3)$ and $F(x, y, z) = f(\theta x, \phi y, \psi z) \in C_c(X^3)$.

Justification of (3) invariance in the limit

Lemma

If $(h_n, \alpha_n h_n \alpha_n^{-1}, \beta_n h_n \beta_n^{-1})$ converges to (θ, ϕ, ψ) then σ is (θ, ϕ, ψ) -invariant.

Let $f \in C_c(X^3)$ and $F(x, y, z) = f(\theta x, \phi y, \psi z) \in C_c(X^3)$.

$$\int_{X^{3}} f d\sigma = \lim_{n \to \infty} \int_{X} f(x, \alpha_{n} x, \beta_{n} x) d\mu \qquad (3)$$
$$= \lim_{n \to \infty} \int_{X} F(x, \alpha_{n} x, \beta_{n} x) d\mu \qquad (4)$$
$$= \int_{X^{3}} F d\sigma \qquad (5)$$

Looking for a limit A

Proposition

Assume that whenever $g_n \in SL(2, \mathbb{R})$ goes to infinity we have that for any neighborhood of id, U and bounded set B,

$$g_n U g_n^{-1} \not\subset B$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

for all large n,

Looking for a limit A

Proposition

Assume that whenever $g_n \in SL(2, \mathbb{R})$ goes to infinity we have that for any neighborhood of id, U and bounded set B,

$$g_n U g_n^{-1} \not\subset B$$

for all large n, then there is a sequence $h_n \in SL(2, \mathbb{R} \text{ so that } 1.$ 1. $h_n \rightarrow id$

2. max{ $\|\alpha h_n \alpha_n^{-1}\|, \|\beta_n h_n \beta_n\|^{-1}$ } = 2

Looking for a limit A

Proposition

Assume that whenever $g_n \in SL(2, \mathbb{R})$ goes to infinity we have that for any neighborhood of id, U and bounded set B,

$$g_n U g_n^{-1} \not\subset B$$

for all large n, then there is a sequence $h_n \in SL(2, \mathbb{R}$ so that

- 1. $h_n \rightarrow id$
- 2. max{ $\|\alpha h_n \alpha_n^{-1}\|, \|\beta_n h_n \beta_n\|^{-1}$ } = 2

The proposition says that after passing to a subsequence, we may assume σ is (θ, ϕ, ψ) -invariant with $\theta = id$ and at least one of ϕ, ψ not equal to the identity.

Let $\Phi_n : SL(2, \mathbb{R}) \to [1, \infty)$ by $\Phi_n(h) = \max\{\|\alpha_n h \alpha_n^{-1}\|, \|\beta_n h \beta_n\|^{-1}\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let
$$\Phi_n : SL(2, \mathbb{R}) \to [1, \infty)$$
 by
 $\Phi_n(h) = \max\{\|\alpha_n h \alpha_n^{-1}\|, \|\beta_n h \beta_n\|^{-1}\}.$

• Φ_n is continuous.

Let
$$\Phi_n : SL(2, \mathbb{R}) \to [1, \infty)$$
 by
 $\Phi_n(h) = \max\{\|\alpha_n h \alpha_n^{-1}\|, \|\beta_n h \beta_n\|^{-1}\}.$

- Φ_n is continuous.
- Under our assumption $[1,2] \subset \Phi_n(U)$ for all large *n*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let
$$\Phi_n : SL(2, \mathbb{R}) \to [1, \infty)$$
 by
 $\Phi_n(h) = \max\{\|\alpha_n h \alpha_n^{-1}\|, \|\beta_n h \beta_n\|^{-1}\}.$

• Φ_n is continuous.

• Under our assumption $[1,2] \subset \Phi_n(U)$ for all large n.

• So for all large *n* we may choose $h_n \in U$ so that $\max\{\|\alpha h_n \alpha_n^{-1}\|, \|\beta_n h_n \beta_n\|^{-1}\} = 2.$

Let
$$\Phi_n : SL(2, \mathbb{R}) \to [1, \infty)$$
 by
 $\Phi_n(h) = \max\{\|\alpha_n h \alpha_n^{-1}\|, \|\beta_n h \beta_n\|^{-1}\}.$

• Φ_n is continuous.

- Under our assumption $[1,2] \subset \Phi_n(U)$ for all large n.
- So for all large *n* we may choose $h_n \in U$ so that $\max\{\|\alpha h_n \alpha_n^{-1}\|, \|\beta_n h_n \beta_n\|^{-1}\} = 2.$
- Choosing shrinking U we may assume $h_n \rightarrow id$.

<ロ> <@> < E> < E> E のQの

Lemma

 ϕ and ψ have both eigenvalues 1 and in particular any non-identity element has to be $\mu\text{-mixing.}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

 ϕ and ψ have both eigenvalues 1 and in particular any non-identity element has to be $\mu\text{-mixing.}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $h_n \rightarrow id$ means the eigenvalues of h_n converge to 1.

Lemma

 ϕ and ψ have both eigenvalues 1 and in particular any non-identity element has to be $\mu\text{-mixing}.$

- $h_n \rightarrow id$ means the eigenvalues of h_n converge to 1.
- The eigenvalues of h_n are the eigenvalues of $\alpha_n h_n \alpha_n^{-1}$ and $\beta_n h_n \beta_n^{-1}$.

Lemma

 ϕ and ψ have both eigenvalues 1 and in particular any non-identity element has to be $\mu\text{-mixing}.$

- $h_n \rightarrow id$ means the eigenvalues of h_n converge to 1.
- The eigenvalues of h_n are the eigenvalues of $\alpha_n h_n \alpha_n^{-1}$ and $\beta_n h_n \beta_n^{-1}$.
- \bullet Because eigenvalues change continuously the eigenvalues of ϕ and ψ are 1.

Lemma

 ϕ and ψ have both eigenvalues 1 and in particular any non-identity element has to be $\mu\text{-mixing.}$

- $h_n \rightarrow id$ means the eigenvalues of h_n converge to 1.
- The eigenvalues of h_n are the eigenvalues of $\alpha_n h_n \alpha_n^{-1}$ and $\beta_n h_n \beta_n^{-1}$.
- \bullet Because eigenvalues change continuously the eigenvalues of ϕ and ψ are 1.

• Because G is mixing, any element of G that generates an unbounded subgroup is mixing.

Looking for a limit B

Proposition

Whenever $g_n \in SL(2, \mathbb{R})$ goes to infinity we have that for any neighborhood of id, U and bounded set B,

$$g_n U g_n^{-1} \not\subset B$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for all large n.

This is a computation.

Doing the computation

Let
$$g_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$$
.

Doing the computation

Let
$$g_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$$
. Observe $g_n \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix} g_n^{-1} =$
$$\begin{pmatrix} a_n d_n - a_n c_n s - b_n c_n & -a_n b_n + a_n^2 s + a_n b_n \\ c_n d_n - c_n^2 s - c_n d_n & -b_n c_n + a_n c_n s + a_n d_n \end{pmatrix} =$$
$$\begin{pmatrix} 1 - a_n c_n s & a_n^2 s \\ -c_n^2 s & 1 + a_n c_n s \end{pmatrix}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Doing the computation

Let
$$g_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$$
. Observe $g_n \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix} g_n^{-1} =$
$$\begin{pmatrix} a_n d_n - a_n c_n s - b_n c_n & -a_n b_n + a_n^2 s + a_n b_n \\ c_n d_n - c_n^2 s - c_n d_n & -b_n c_n + a_n c_n s + a_n d_n \end{pmatrix} =$$
$$\begin{pmatrix} 1 - a_n c_n s & a_n^2 s \\ -c_n^2 s & 1 + a_n c_n s \end{pmatrix}.$$

For this to be bounded for all small s we need that a_n and c_n are bounded (in n).

Doing the computation II

Similarly,
$$g_n \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} g_n^{-1} =$$

$$\begin{pmatrix} 1 + b_n d_n & b_n^2 s \\ d_n^2 s & 1 - b_n d_n s \end{pmatrix}.$$

Doing the computation II

Similarly,
$$g_n \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} g_n^{-1} =$$

$$\begin{pmatrix} 1 + b_n d_n & b_n^2 s \\ d_n^2 s & 1 - b_n d_n s \end{pmatrix}.$$

For this to be bounded for all small s we need that b_n and d_n are also bounded.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Doing the computation II

Similarly,
$$g_n \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} g_n^{-1} =$$

$$\begin{pmatrix} 1 + b_n d_n & b_n^2 s \\ d_n^2 s & 1 - b_n d_n s \end{pmatrix}.$$

For this to be bounded for all small s we need that b_n and d_n are also bounded.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

This contradicts that g_n is unbounded.

So σ is (id, ϕ, ψ) -invariant with at least one of $\phi, \psi \neq id$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Recap of (3)

So σ is (id, ϕ, ψ) -invariant with at least one of $\phi, \psi \neq id$. If only one is non-identity, it is mixing and thus ergodic and so we have one option for (3).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recap of (3)

So σ is (id, ϕ, ψ) -invariant with at least one of $\phi, \psi \neq id$. If only one is non-identity, it is mixing and thus ergodic and so we have one option for (3).

Otherwise they are both mixing,

Recap of (3)

So σ is (id, ϕ, ψ) -invariant with at least one of $\phi, \psi \neq id$. If only one is non-identity, it is mixing and thus ergodic and so we have one option for (3).

Otherwise they are both mixing, so their product is ergodic and we have the other option for (3).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <