Disjointness in Ergodic Theory, Minimal Sets, and a Problem in Diophantine Approximation¹

By

HARRY FURSTENBERG The Hebrew University, Jerusalem

0. Summary. The objects of ergodic theory – measure spaces with measure-preserving transformation groups – will be called *processes*, those of topological dynamics – compact metric spaces with groups of homeomorphisms – will be called *flows*. We shall be concerned with what may be termed the "arithmetic" of these classes of objects. One may form *products* of processes and of flows, and one may also speak of *factor processes* and *factor flows*. By analogy with the integers, we may say that two processes are *relatively prime* if they have no non-trivial factors in common. An alternative condition is that whenever the two processes appear as factors of a third process, then their product too appears as a factor. In our theories it is unknown whether these two conditions are equivalent. We choose the second of these conditions as the more useful and refer to it as *disjointness*.

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 122, Number 1, September 1994

ELEMENTARY PROOF OF FURSTENBERG'S DIOPHANTINE RESULT

MICHAEL D. BOSHERNITZAN

(Communicated by Andreas R. Blass)

ABSTRACT. We present an elementary proof of a diophantine result (due to H. Furstenberg) which asserts (in a special case) that for every irrational α the set $\{2^{m}3^{n}\alpha|m, n \geq 0\}$ is dense modulo 1. Furstenberg's original proof employs the theory of disjointness of topological dynamical systems.

1. INTRODUCTION

Throughout the paper by a *semigroup* we mean an infinite subset of positive integers which is closed under multiplication. Two integers p, q are called multiplicitively independent if both are ≥ 2 and the ratio of their logarithms $(\log p)/(\log q)$ is irrational. The equivalent requirement is that p and q should not be integral powers of a single integer.

Furstenberg's typological x2 x3 theorem
(following Bookernitzen)
Arg 16 2002
Thun (furstenberg 67)

$$TI = B/2$$
 $M_2: TI \rightarrow TT$ $M_2(x) = 2x \mod Z$
 $M_3: TP = M_2(x) = 3x \mod Z$
 $M_3: TP = M_2(x) = 3x \mod Z$
 $Tf = de TT = 0$ theor $\int M_2 \circ M_3(x) : t_1 e(N)^2$
is dense.
EXAMPLA: $T = t_2$
 $\int \frac{1}{5}, \frac{2}{5}, \frac{4}{5}, \frac{2}{5}, \frac{1}{5}, \frac{1}{5}, \frac{2}{5}, \frac{4}{5}, \frac{3}{5}, \frac{3}{5}, \frac{3}{5}, \frac{3}{5}, \frac{3}{5}, \frac{3}{5}, \frac{3}{5}, \frac{4}{5}, \frac{3}{5}, \frac{4}{5}, \frac{4}{5}, \frac{4}{5}, \frac{4}{5}, \frac{4}{5}, \frac{4}{5}, \frac{4}{5}, \frac{4}{5}, \frac{4}{5}, \frac{2}{5}, \frac{4}{5}, \frac{4$

Given 200 wart to find in s.t. Yizio Situ 21+E Find V, S C (M) So float V-losp < E losg < 25 logg S' < logg < 5 $S_i = p \cdot q^l$ $p^s < q' q' z' < l + 2$ $S_{i+1} \leq p_{s}^{k} q^{\ell} \cdot q^{r} = q^{\ell+r} p^{\ell-s} \langle (1+\epsilon)S_{i} \rangle$ From now on SCIN non-lacknam semisp KCIP is S-inv if HseS, SCK7CK. Lemma I IF KCT closed, infinite, S invariant, and contains a voarisolated rappind number then K=TT.

+ + + ++++-JEK Lemma 2 IF KCT closed, S-invariant, novempty, ten K contains a rational point. PE of flue assuming bernman land 2. let K be infinite closed S-inv. what to show that K=V. Use Lemma 2 with K' instead of K, where K' is the set of accume both points of K. By Cemma & K'a contacts a rational point. Applying Lemma I we get the theorem. PE of Lemma 1. Suppose O is an accumulation point of K.

The contradiction assume the
contraint no valual points, is nonempty and

$$S-iN$$
. We will show (K is device
 $f = get (GR)$)
 $S-iN$. We and show (K is device
 $f = get a contradiction (et E>0).$
 $Cet pige S mult. ind. in S.
 $Cet t be an contager satisfy the
 $f = get (GR)$$$

there is NEW St.
$$p^{\mu} \equiv q^{\mu} \equiv 1 \pmod{t}$$
.
Define inductively
 $K \equiv Ko \supset K_1 \supset K_{2 \supset} \longrightarrow \supset K_{t-1}$
where $K_{i,t_1} \equiv \int X \equiv K_i : x + \frac{1}{t} \pmod{2t}$ in K_i^2
 $-\frac{11 + \frac{1}{t+1} + \frac{1}{t+1}}{K_i}$
 $\frac{11 + \frac{1}{t+1}$

(pu) (qu) x is infinite and in Ki. · The Kint of. To see this, consider Di=Ko-Ki D: closed (since Ki compact). De has an accumulation at a because Ki is Mohile. Di is inv. conter S= semigroup generated by phigh \implies ((emma 1) $D_{\tilde{c}} = T$ =) = EDi => Ken #0. So $K_{\tilde{t}-1} \neq \varphi$, cot yell Kry. Then ソリーキリーキ, ツー(1-キ) e Ko Kti KE-2 => Ko is to dense => Ko is

E-dense.

Furstenherg x2 x3 conjecture let S be a non-locanog servigrown. Any S-ion. weasure is either atomic or celoegue. atomic: J xo s.t. M(1x02)>0, covariant: UseS, UACT Back $\mu(A) = \mu(S^{-1}(A)).$