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Height

There is a general theory of Weil heights for points on
projective varieties over Q̄.

For most of this talk, we only need the absolute logarithmic Weil
height

h : Q̄→ R≥0.

In general, one needs to combine the contributions from all
absolute values to define height functions. But for the above h
on Q̄, there is an alternative explicit formula, as follows.
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Height

Fix an embedding Q̄ ⊂ C. For α ∈ Q̄, express its minimal
polynomial over Z as:

c(x − α1) · · · (x − αd ).

Then h(α) =
1
d

(
log |c|+

d∑
i=1

log max{|αi |,1}

)
.

Example: α ∈ Q, express α = a
b with a,b ∈ Z and gcd(a,b) = 1,

then h(α) = log max{|a|, |b|}.
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Height

More example/property: let P(x) ∈ Q̄[x ] of degree D, then

h(P(α)) = Dh(α) + O(1) ∀α ∈ Q̄.

This means there exists C > 0 depending only on P(x) such
that

|h(P(α))− Dh(α)| ≤ C ∀α ∈ Q̄.

In particular h(P(n)) = D log |n|+ O(1) for n ∈ Z.
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D-finite series

N0 = N ∪ {0}, K is a field, and m ∈ N.

Let n = (n1, . . . ,nm) ∈ Nm
0 and let x = (x1, . . . , xm) be the vector

of the indeterminates x1, . . . , xm. Write xn to denote the
monomial xn1

1 . . . xnm
m having the total degree

‖n‖ := n1 + . . .+ nm.

Write
∂‖n‖

∂xn to denote the operator

(
∂

∂x1

)n1

. . .

(
∂

∂xm

)nm

on K [[x]] := K [[x1, . . . , xm]].
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D-finite series

A power series f (x) ∈ K [[x]] is said to be D-finite (over K (x)) if

all the derivatives
∂‖n‖f
∂xn for n ∈ Nm

0 span a finite-dimensional
vector space over K (x).

Problem: f (x) =
∑

n∈Nm
0

anxn ∈ Q̄[[x]] is D-finite, study the growth

of h(an) with respect to ‖n‖.
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Examples

It is helpful to think of the univariate case (m = 1), here

f (x) =
∞∑

n=0

anxn ∈ Q̄[[x ]] is D-finite iff it satisfies a linear

differential equation with coefficients in Q̄[x ].

Equivalently, the coefficients (eventually) satisfy a linear
recurrence relation with polynomial coefficients: there exist
d ∈ N and P0(x), . . . ,Pd (x) ∈ Q̄[x ] with Pd 6= 0 such that

Pd (n)an+d + . . .+ P0(n)an = 0

for all sufficiently large n.
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Examples

Example 1: exponential function

f (x) =
∑ xn

n!
, h(an) = log(n!) ∼ n log n.

Example 2: rational function with at least one pole not being a
root of unity

f (x) =
1

1− 2x
=
∑

2nxn, h(an) = n log 2.

Example 3: logarithmic function

f (x) = log(1 + x) = x − x2

2
+

x3

3
+ . . . , h(an) = log n.
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Example 4: rational function with at least one pole of order at
least 2

f (x) =
1

(1− x)2 =
∑

nxn−1, h(an) = log(n + 1).

Example 5: rational function in which the an’s belong to a finite
set

f (x) =
P(x)

1− x2022 , h(an) = O(1).
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A height gap result in 2019

Below f (x) =
∑

n∈Nm
0

anxn ∈ Q̄[[x]] is a D-finite power series in m

variables.

The below result significantly strengthens early results by van
der Poorten-Shparlinski and Bell-Chen.
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A height gap result in 2019

Theorem (Bell-N.-Zannier)

Suppose lim
‖n‖→∞

h(an)

log ‖n‖
= 0. Then:

(a) f is a rational function.

(b) If f is not a polynomial, its denominator, up to scalar
multiplication, has the form

∏̀
i=1

(1− ζixni )

where ` ≥ 1, ζi is a root of unity, ni ∈ Nm
0 \ {0} for 1 ≤ i ≤ `,

and the 1− ζixni ’s are ` distinct irreducible polynomials.

(c) The coefficients (an)n∈Nm
0

belong to a finite set.
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A height gap result in 2019

Key observation after the above result: there’s a “gap” in the
possible growth of h(an). More precisely if h(an) is dominated
by log ‖n‖ then it is O(1).
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Many results motivated by the above theorem

For the rest of this talk: focus on univariate power series
f (x) =

∑
anxn ∈ Q̄[[x ]].

From the previous 5 examples, it’s natural to ask whether we
can completely classify the growth of h(an) as O(n log n), O(n),
O(log n), or O(1) when f is D-finite. A more precise open
problem will be stated at the end of the talk.

Right after our work in 2019, we have some idea for further
results toward the above classification. But its release was
delayed until June 2022! In the meantime, there are highly
interesting results motivated by our work.
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Many results motivated by the above theorem

Results by Bell, Hu, Ghioca, Satriano on a height gap
phenomenon in arithmetic dynamics.

A complete classification for the possible height growth of
coefficients of Mahler functions by Adamczewski and Bell.

Dimitrov’s beautiful proof of the Schinzel-Zassenhauss
conjecture from the 1960s.
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Our result in June 2022

A set S ⊆ N is said to have positive upper density if

lim sup
|S ∩ [1,n]|

n
> 0,

otherwise S is said to have zero density.

Let α ∈ Q̄, its denominator den(α) is the smallest d ∈ N such
that dα is an algebraic integer.

In the next theorem: K ⊂ C is a number field,
f (x) =

∑
anxn ∈ K [[x ]] is D-finite, r ∈ [0,∞] is the radius of

convergence of f .
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Our result in June 2022

Theorem (Bell-N.-Zannier)

(a) If r ∈ {0,∞} and f is not a polynomial then
h(an) = O(n log n) for every large n and h(an)� n log n on
a set of positive upper density.

(b) If r /∈ {0,∞} then at least one of the following holds:
(i) h(an)� n on a set of positive upper density.
(ii) den(an)� n, and hence h(an) > (log n)/[K : Q] + O(1) on a

set of positive upper density.
(iii) f is a rational function whose poles are roots of unity.
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Some open problems

Roughly speaking, the previous theorem says that n log n, n,
log n, and the constant function are the possible lower bounds
for h(an).

We expect that these are also upper bounds:
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Some open problems

Question

f (x) =
∑

anxn ∈ Q̄[[x ]] is D-finite. Is it true that one of the
following holds?

(i) h(an) = O(n log n) for every n and h(an)� n log n on a set
of positive upper density.

(ii) h(an) = O(n) for every n and h(an)� n on a set of positive
upper density.

(iii) h(an) = O(log n) for every n and h(an)� log n on a set of
positive upper density.

(iv) h(an) = O(1) for every n.
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Some open problems

Here’s a weaker version of the above.

Question

f (x) =
∑

anxn ∈ Q̄[[x ]] is D-finite. Is it true that the following
hold?

(i) h(an) = O(n log n) for every n.
(ii) If h(an) = o(n log n) then h(an) = O(n).
(iii) If h(an) = o(n) then h(an) = O(log n).
(iv) If h(an) = o(log n) then h(an) = O(1).

Remark: parts (i) and (iv) are already known from our result in
2019.
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Some open problems

Part (ii) above is analogous to a long standing open problem in
the theory of Siegel E-functions. Instead of h(an), the below
problem considers the (affine) height of a tuple of algebraic
numbers.

Question

f (x) =
∑

anxn ∈ Q̄[[x ]] is D-finite. Assume that
h(a0, . . . ,an) = o(n log n). Is it true that h(a0, . . . ,an) = O(n)?
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Some idea for the proof

The essential case to consider is:
f (x) ∈ Q[[x ]] is D-finite with rational coefficients.
Its radius of convergence r = 1.

And we need to prove that at least one of the following holds:
A. den(an)� n on a set of positive upper density.
B. f is rational.

Suppose A is not true. This means that for a large N, there is a
“thin” exceptional subset E of {1, . . . ,N} such that den(an) is
small vs n for every n ∈ {1, . . . ,N} \ E . We need to prove that f
is rational.
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Some idea for the proof

First ingredient: Hankel determinant and rational
approximation.

Let g(x) =
∑

bnxn and m ≥ 0, define

∆m(g) = det


b0 b1 . . . bm
b1 b2 . . . bm+1
. . .
bm bm+1 . . . b2m

 .
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Some idea for the proof

Facts:
If ∆m(g) = 0 for many consecutive values of m then g can
be “well” approximated by rational functions.

If a D-finite power series can be well approximated by a
rational function then it is indeed a rational function.
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Second ingredient: Polya’s inequality.

Suppose g(x) =
∑

bnxn ∈ C[[x ]] converges in the open unit
disk and can be continued analytically beyond the open unit
disk. Then there exists ρ < 1 such that

|∆m(g)| < ρm2

for all large m.
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Third ingredient: construction of an auxiliary polynomial.

Recall that we assume Property A does not hold. This means
for a large N, there’s a thin subset E of {1, . . . ,N} such that
den(an) is small vs n for n ∈ {1, . . . ,N} \ E .

Construct an integer-valued polynomial P such that P(n) = 0
for n ∈ E . Hence although den(an) for n ∈ E might be large, we
simply have P(n)an = 0.

Then consider:
g(x) :=

∑
P(n)anxn

which is a linear combination of the derivatives of f (x).
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which is a linear combination of the derivatives of f (x).
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By Polya’s inequality |∆m(g)| < ρm2
for some ρ < 1.

On the other hand, ∆m(g) is a rational number whose
denominator is quite small.

Therefore ∆m(g) = 0. Then we can have that g is rational and
it’s not hard to prove rationality of f from here.

This is just a rough idea. We need to make precise all the
involving estimates and construct P carefully so that everything
works.
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THANK YOU!
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