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=>An).  wlxga= Y An),

n<x n<x
n=amod q

where A(n) is log p at n = p* and 0 elsewhere.
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Primes in arithmetic progression
n(x)=#{p<x}tandfora,qeZ,qg>1,(aq)=1,

n(x;q,a) = #{p < x: p=amod q}.

If (a,q) = 1, then n(x; g, a) ~ ﬁn( ) ~ (q) Toax» @8 X — oo,

Chebyshev’s prime counting function :

=>An).  wlxga= Y An),

n<x n<x
n=amod q
where A(n) islogp at n=p*and 0 elsewhere

PNTin APs (v2):  (x;q.a) ~ ﬁl[/(X) (G X> as X — co.

¢(q
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Theorem (Hooley, 1977)

For (a,q) = 1, conditionally on RH and Linear Independence

(LI) of the imaginary parts of non negative L-zeros the error
term

E(x:q.a) :==v(x;q,a) - (¢(q)) " x
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Moments of error terms in the dist. of primes

Theorem (Hooley, 1977)

For (a,q) = 1, conditionally on RH and Linear Independence
(LI) of the imaginary parts of non negative L-zeros the error
term

E(x;g.a) :=(x;q,a) - (¢(q)) " x
is such that for any fixed r e N,

I\D\\

X
lim lim = i,
g—0 X—o0 (|Og q)g IOng X =iy
where

(2n-1)-(2n-3)---1 ifr=2n,
Hr == .
0 otherwise.
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Moments of error terms in the dist. of primes

Theorem (Hooley, 1977)

For (a,q) = 1, conditionally on RH and Linear Independence
(LI) of the imaginary parts of non negative L-zeros the error
term

E(x;g.a) :=(x;q,a) - (¢(q)) " x
is such that for any fixed r e N,

I\D\\

X
lim lim = i,
g—0 X—o0 (|Og q)g IOng X =iy
where

(2n-1)-(2n-3)---1 ifr=2n,
Hr == .
0 otherwise.

Question : uniformity? A range for g relative to X ?
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To circumvent (LI), de la Bretéche—Fiorilli (2023) introduce a
weighted version of E(x; g, a) :
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Moments of error terms in the dist. of primes

To circumvent (LI), de la Bretéche—Fiorilli (2023) introduce a
weighted version of E(x; g, a) :

A(n
E,(x;q.a) = Z % (Iog n/x Z % Iog n/x))
nsanri!)dq nq2
l/’U(X;q"a) QZ’IJ(X-/\/O.q)

where n: R — R is diff., even, satisfies 77> 0, (1), /(1) < e (/2791
Ex. K > 1/2 + 6. Take ni(t) = e KM,
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To circumvent (LI), de la Bretéche—Fiorilli (2023) introduce a
weighted version of E(x; g, a) :

E(xig.a)= > % n(log(n/x)) Z . n(log(n/x)).
nzanrznladq nqZ

w'/(X;qﬂa) qu(X»XO.q)

where n: R — R is diff., even, satisfies 7> 0, 1(1), /(1) < e (/2791

@ n-th momenton a: M,(x;q.7) = ¢(q)™ Z(am(;d qE(x;q.a)".
a,q)=1
@ s-th log-moment on x. Let &: R — R, even, # 0, L', with & > 0.

Ven = ﬁ fom "’(é)(Mn(et; g.n) — ma(q. fi))sdt-

Here m,(q.7) = lim7_e + fOT Mn(et; g, n)dt.
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Work of de la Breteche—Fiorilli

@ establishes under RH alone a Gaussian lower bound on
(V2r ns
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Work of de la Breteche—Fiorilli

@ establishes under RH alone a Gaussian lower bound on
(V2r ns

@ produces a range of validity for (n, r) relatively to g,
@ leads to a lower bound on an error term of type E(x; g, a) :

Corollary (dIB.—F.)

Assume GRH; let g: R.1 — R.3 be increasing to infinity with
g(u) < ev. For all big enough g and all a coprime to g there
exists xg s.t. g(c1log Xq) < g < g(calogxq) (0 < ¢ < €2 < 3,
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1/2
d 5 2] = -1 7 Xa V' 12
and  u(xq;9.8) ~(a) "W x00) > () (0ga)

<
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Work of de la Breteche—Fiorilli

@ establishes under RH alone a Gaussian lower bound on
(V2r ns

@ produces a range of validity for (n, r) relatively to g,
@ leads to a lower bound on an error term of type E(x; g, a) :

Corollary (dIB.—F.)

Assume GRH; let g: R.1 — R.3 be increasing to infinity with
g(u) < ev. For all big enough g and all a coprime to g there
exists xg s.t. g(c1log Xq) < g < g(calogxq) (0 < ¢ < €2 < 3,

absolute)

1/2
d 5 2] = -1 7 Xa V' 12
and  u(xq;9.8) ~(a) "W x00) > () (0ga)

<

Recall Montgomery’s conj. : v/(x; . a) - 75 < (%)"/2x* for
g <x.
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Goal : generalization to the context of Galois extensions of
number fields.

@ L/K gal. ext. of number fields ; G := Gal(L/K).
@ p C Ok an unram. ideal in L/K.

@ Frob, c Gal(L/K) the Frobenius conj. class at p (lifts to G
the Frobenius aut. on the level of residual fields x — xV?).

Chebotarev Density Theorem
Let C c Gal(L/K) be a conj. class, then

ICI

#{p c Ok unram. : Frob, = C, Np < X} ~x5 @l

Li(x),

where Li(x) = [’ ok
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extending Frob to ram. primes) :
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Chebotarev for class functions

Let t: G — R be a class function. Chebotarev asserts (up to
extending Frob to ram. primes) :

n(x; L/K, 1) := ) t(Frob,) ~T(1)Li(x),  (x — oo)
p<Ok
Np<x

where t(y) = |G| Ygec H(9)x x(9), for x € Ir(G).
Study of the error term :
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Chebotarev for class functions

Let t: G — R be a class function. Chebotarev asserts (up to
extending Frob to ram. primes) :

a(x; L/K, 1) := > t(Frob,) ~T(1)Li(x),  (x — o)

p<Ok
Np<x

where H(x) = & Sgea H9X(9), for x € Iir(G).
Study of the error term : it has a long history. Let us mention

Lagarias—Odlyzko (1979), Bellaiche (2016), Fiorilli-J. (2020).
Th. (Bellaiche, 2016)

K=Q M= Hp ram. Ps /ll,1 (t) = Z,ylrr. E(X)IX(U assuming
RH+AC : n(x;L/K,t) - t(1)Li(x) < 11.1(t) Vx log(xIM|G)
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Chebotarev for class functions

Let t: G — R be a class function. Chebotarev asserts (up to
extending Frob to ram. primes) :

n(x; L/K, 1) := ) t(Frob,) ~T(1)Li(x),  (x — oo)
p<Ok
Np<x

where 7(x) = & Zge H(@)r(9), for x € Ire(G).

Study of the error term : it has a long history. Let us mention
Lagarias—Odlyzko (1979), Bellaiche (2016), Fiorilli-J. (2020).

Fixing n, a weight function as before, we consider :

yn(X; L/K, 1) = Z t(Frobm)M (Iog(Np’"/x))
p<Ok sz
m>1
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Chebotarev for class functions

Let t: G — R be a class function. Chebotarev asserts (up to
extending Frob to ram. primes) :

n(x; L/K, 1) := ) t(Frob,) ~T(1)Li(x),  (x — oo)
p<Ok
Np<x

where 7(x) = & Zge H(@)r(9), for x € Ire(G).

Study of the error term : it has a long history. Let us mention
Lagarias—Odlyzko (1979), Bellaiche (2016), Fiorilli-J. (2020).

Fixing n, a weight function as before, we consider :

yn(X; L/K, 1) = Z t(Frobm)M (Iog(Np’"/x))
p<Ok sz
m>1

Chebotarev : v, (x; L/K, ) ~ 1(1) VxL,(2). = [ e n(x)
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occur.
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Weighted moments in Chebotarev

In the general context of number fields, real L-zeros might
occur. Define :

Z(L/K 1) = t(x)ords_y L(s,L/K.x).
xelrr(G)

Work of Fiorilli—J. implies under RH for £; that -
Y (X; L/K, t) = t(1 )X%L,,(%) has average value 7(0)z(L/K., t).
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In the general context of number fields, real L-zeros might
occur. Define :

Z(L/K 1) = t(x)ords_y L(s,L/K.x).

xelrr(G)

Work of Fiorilli—J. implies under RH for /; that -
wn(x; LK, 1) = t(1 )sz,,( ) has average value 7(0)z(L/K, t).

Define the n-th moment Mn(U, L/K;t,n,®):

1 o0 u u . n
TN [ (B ek ~Tnet £,(5)-TO)z(L /K. ) au
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Weighted moments in Chebotarev

In the general context of number fields, real L-zeros might
occur. Define :

Z(L/K 1) = t(x)ords_y L(s,L/K.x).

xelrr(G)

Work of Fiorilli—J. implies under RH for /; that -
wn(x; LK, 1) = t(1 )sz,,( ) has average value 7(0)z(L/K, t).

Define the n-th moment Mn(U, L/K;t,n,®):

L (s eY; —t(1)ez £, (3)-7(0 !
TN [ (B ek ~Tnet £,(5)-TO)z(L /K. ) au

with : R — R non zero, even, L', ® > 0, and U > 0.
Rmk The convergence of the integral defining
Mn(U, L/K; t,n, ®) relies on RH + Artin’s conj. (AC).
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Our result uses norms and moments of class fcts, as well as
weighted variances of Artin L-fct zeros.
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Weighted moments in Chebotarev

Our result uses norms and moments of class fcts, as well as
weighted variances of Artin L-fct zeros.
e Norms : G a group, t: G — C, a class fct,

k(t) == > x(IYIR0)IE, .k = 0).

xelr(G)
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Weighted moments in Chebotarev

Our result uses norms and moments of class fcts, as well as
weighted variances of Artin L-fct zeros.

e Norms : G a group, t: G — C, a class fct,

Aty = D xR, Gk 2 0),

x€lr(G)
Generalizes Bellaiche’s “Littlewood norm” (case (j, k) = (1,1)).

e Variance : L/F Galois ext. of nb fields (e.g. F = Q) and K a
subextension. G = Gal(L/K), G" = Gal(L/F). Define :

-1
ALFE ) = Y F @R boleT) = O {22

xeln(G*) pyeR
where p, runs over the non-trivial zeros of L(s,L/F, x).
Finally define

Syerm(c) 1T () bo(xi 72)
- 2"
(Z,yelrr(c#) |f+()()|2bo()(?772))
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Setup of our result :
e L/K/F nbfields s.t. L # Q, and L/F Galois. Assume RH and
AC for L/F.
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Setup of our result :

e L/K/F nbfields s.t. L # Q, and L/F Galois. Assume RH and
AC for L/F.

e G:=Gal(L/K), G" := Gal(L/F), n,® as in the def. of
Mn(U, L/K; t,n, ).
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Setup of our result :

e [ /K/F nbfields s.t. L # Q, and L/F Galois. Assume RH and
AC for L/F.

e G:= Gal(L/K), Gt := Gal(L/F), n,® as in the def. of

Mn(U, L/K; t,n, ).

e t: G— R anon-zero class fct s.t. t+ := Indgt satisfies

ﬁ S Rzo.
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Weighted moments in Chebotarev

Setup of our result :

e L/K/F nbfields s.t. L # Q, and L/F Galois. Assume RH and
AC for L/F.

e G:= Gal(L/K), Gt := Gal(L/F), n,® as in the def. of

Mn(U, L/K; t,n, ).

e t: G— R anon-zero class fct s.t. t+ := Indgt satisfies

ﬁ S Rzo.

Main Theorem (de la Bretéche — Fiorilli — J.)
For m e N, we have the lower bound

Mom(U, L/K: t,7,®) 2 pomv(L/F. t* ,,)m(1 +O,(mPmiwg(L/F, t; n)))

(ky[F : Q) A14(t7) log(rdy ))>™
+ O( U )

where «, > 0 is a constant, and rd; = |disc(L)|"/I5F1.

4
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Bounds for v(L/F, t";n)
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Bounds for v(L/F, t";n)

To understand the size of v(L/F, t*;n) define,for0 # t: G — C:
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Bounds for v(L/F, t";n)

To understand the size of v(L/F, t*;n) define,for0 # t: G — C:

| Sretm@ ¥(@MTOR| |zX€m X(@t(x)P|
S := max

<1
12266 3 gy x(1 Nt 1¢aeg A12(1)
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Bounds for v(L/F, t";n)

To understand the size of v(L/F,t*;n) define,for0 #t: G —» C:

s oo [ Do @T0F] S x@T0F|
TS S (E e hall) |

Theorem (de la Breteche — Fiorilli — J.)
Notation/assumptions as in the previous Th.

Assume S;+ <1 - K,](Iogz(rdL = 2))_1 where «, > 0 is a large
enough constant. Then

| v(L/F,tt;n)
o([)[F : Qlog(rd,)d1 o(tF)

as well as

|
1)<+ O g oy)

(loglogrd;)?
log(rd;)

F. Jouve Moments in the Chebotarev Density Theorem

wy(L/F, tt;7) <, F




S; : examples

Q If gis abelian and g € G then t = 14 satisfies S; = 0.
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S; : examples

Q If gis abelian and g € G then t = 14 satisfies S; = 0.
@ If G is dihedral of order 2n, with n odd :

Dh=(ot:0"=1>=1,t0r=0"").

F. Jouve Moments in the Chebotarev Density Theorem



S; : examples

Q If gis abelian and g € G then t = 14 satisfies S; = 0.
@ If G is dihedral of order 2n, with n odd :

Dh=(ot:0"=1>=1,t0r=0"").
The nontrivial conjugacy classes of G are

{o?, 077} (1 _js%(n—1)), and {ro*: 0 < k < n-1}.
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S; : examples

Q If gis abelian and g € G then t = 14 satisfies S; = 0.
@ If G is dihedral of order 2n, with n odd :

Dh=(ot:0"=1>=1,t0r=0"").

The nontrivial conjugacy classes of G are

(o, oy (1 <j< L(n-1)),

and {ro¥: 0 < k < n-1}.

One has
n >3 >3 >5
t |Dn|1e 1[0',0"1} 216 + 1{(r,{r*1]
1-2/ 2
St| mx 2(1-1/71) <3

F. Jouve Moments in the Chebotarev Density Theorem



S; : examples

Q If gis abelian and g € G then t = 14 satisfies S; = 0.
@ If G is dihedral of order 2n, with n odd :

Dh=(ot:0"=1>=1,t0r=0"").

The nontrivial conjugacy classes of G are

ooy (1<j<i(n-1), and (ro*:0<k<n-1}.
One has
n| >3 >3 >5
t |Dn|1e 1[0',0"1} 216 + 1{(r,{r*1]
1-2/
St | =3 | amim <3

(3] g—{(g ?):ceIF*,dePp},thegroupofaffine

transformations of A1 has a real irreducible character ¢ of
degree p—1. One has So=1/(p-1).
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Step 1 : explicit formula.
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Step 1 : explicit formula.

L/K a Galois extension of number fields, G = Gal(L/K). Let
x € Irr(G). Assume AC.
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Ingredients in the proof of the main result, |

Step 1 : explicit formula.

L/K a Galois extension of number fields, G = Gal(L/K). Let
x € Irr(G). Assume AC. One has

1
Yu(x; L/K, x) XZL’Y% X=X0 ZXPX“A( 2ni )

+ Oy(x2 log(A(x) + 2)).

where
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Step 1 : explicit formula.

L/K a Galois extension of number fields, G = Gal(L/K). Let
x € Irr(G). Assume AC. One has

1
Yu(x; L/K, x) XZL’Y% X=X0 ZXPX“A( 2ni )

+ Oy(x2 log(A(x) + 2)).

where

© p, runs through the non-trivial zeros of L(s, L/K, ),
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Ingredients in the proof of the main result, |

Step 1 : explicit formula.

L/K a Galois extension of number fields, G = Gal(L/K). Let
x € Irr(G). Assume AC. One has

;
Yn(X: L/K, x) XZ‘EU% X=Xo ZXPX“A( 27rl)

+ Oy(x2 log(A(x) + 2)).

where

© p, runs through the non-trivial zeros of L(s, L/K, ),
@ A(y) denotes the (analytic) Artin conductor attached to y.

F. Jouve Moments in the Chebotarev Density Theorem



Ingredients in the proof of the main result, Il

Step 2 : induction.
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Step 2 : induction.
e L /K/F tower of number fields for which L/F is Galois, let
G = Gal(L/K) and Gt = Gal(L/F).
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Ingredients in the proof of the main result, Il

Step 2 : induction.
e L /K/F tower of number fields for which L/F is Galois, let
G = Gal(L/K) and Gt = Gal(L/F).

e nn smooth function as before, t: G — C a class fct.
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Ingredients in the proof of the main result, Il

Step 2 : induction.
e L /K/F tower of number fields for which L/F is Galois, let
G = Gal(L/K) and Gt = Gal(L/F).

e nn smooth function as before, t: G — C a class fct. We have :

Yn(X; L/K, t) = yy(x; L/F, th).
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Ingredients in the proof of the main result, Il

Step 2 : induction.
e L /K/F tower of number fields for which L/F is Galois, let
G = Gal(L/K) and Gt = Gal(L/F).

e nn smooth function as before, t: G — C a class fct. We have :
Yn(X; L/K, t) = yy(x; L/F, t+).
As a consequence, for any ¢ as in the main statement,

Mn(U,L/K; t,n,®) = Mp(U, L/F; t+,5,®).
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Ingredients in the proof of the main result, Il

Step 2 : induction.
e L /K/F tower of number fields for which L/F is Galois, let
G = Gal(L/K) and Gt = Gal(L/F).

e nn smooth function as before, t: G — C a class fct. We have :
Yy (X L/K, t) =y (x; L/F, tT).
As a consequence, for any ¢ as in the main statement,
Mn(U, L/K; t,7,®) = Mp(U, L/ F; .0, ®).

(Recall the def. of M,(U, L/K; t,n, ®) :

’
Uf0°°<b

[ eb)ntes Lk T0et £,(3) - TOZ(L/K.0) au.)
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Ingredients in the proof of the main result, Il

Step 2 : induction.
e L /K/F tower of number fields for which L/F is Galois, let
G = Gal(L/K) and Gt = Gal(L/F).

e nn smooth function as before, t: G — C a class fct. We have :
Yy (X L/K, t) =y (x; L/F, tT).
As a consequence, for any ¢ as in the main statement,
Mn(U, L/K; t,7,®) = Mp(U, L/ F; .0, ®).

(Recall the def. of M,(U, L/K; t,n, ®) :

’
Uf0°°<b

[ eb)ntes Lk T0et £,(3) - TOZ(L/K.0) au.)

Idea : our bounds are best possible in the case F = Q.
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Ingredients in the proof of the main result, 1ll

Step 3 : Approximation and positivity.
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G = Gal(L/K) and Gt = Gal(L/F).
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Step 3 : Approximation and positivity.
e L /K/F tower of number fields for which L/F is Galois, let
G = Gal(L/K) and Gt = Gal(L/F).

e Assume RH and AC for L/F.
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Ingredients in the proof of the main result, 1ll

Step 3 : Approximation and positivity.
e L /K/F tower of number fields for which L/F is Galois, let
G = Gal(L/K) and Gt = Gal(L/F).

e Assume RH and AC for L/F.

An approximation of M,(U, L/K; t,n, ®) is given by :
— . o (_1)n n__ ‘
Do(U. L/Fi t.0.0) = > ([Ttw)

(o]
fo (DX1 ..... xn€lir(GH)  j=1

X Z 6(%(%(1 +"'+7Xn )ﬁ 7/)(1)
# =
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Ingredients in the proof of the main result, 1ll

Step 3 : Approximation and positivity.
e L /K/F tower of number fields for which L/F is Galois, let
G = Gal(L/K) and Gt = Gal(L/F).

e Assume RH and AC for L/F.

An approximation of M,(U, L/K; t,n, ®) is given by :
— —1)n no_
Da(U, L/F; 1,7, ) ;:2( Loy ([T7)

(o]
fo (DX1 ..... xn€lir(GH)  j=1

< % an o) [ T32)

Yiy - Yyn 0 j=1

Combinatorics on zeros enables to evaluate D, by applying
positivity to discard contributions possibly violating Linear
Independence.
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Thanks for your attention!
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