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Pro-p groups and presentations

@ Let p be a prime, and G be a pro-p group: a projective limit of
p-groups.

Equivalently: topological group, compact Hausdorff, totally
disconnected and xP" — 1, for x in G.

d is the minimal number of topological generators of G.
F free pro-p group with d generators.
Surjection F — G, with kernel R.

r is the minimal number of generators of R as a closed normal
subgroup of F.

d = dimg, H(G
r = dimg, H*(G;

;Fp) = dimg,(G/GP[G; G]) and
F,) = dimg, (R/RP[R; F]).
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Groups examples

o Finite examples are p-groups.
o Infinite examples: Z, Zg, F.
@ Pro-p completion of a group: Take G a group, introduce:

G :=lim G/N.
N

o We have F; = Zp, and F, = F,,_/l*\Zp.
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Galois Theoretical examples

o K afield, K its maximal p-extension, consider Gal(K/K).

o K a finite field, Gal(K/K) =~ Z,.

@ K a local field, Tk its p-maximal unramified extension:
Gal(Tk/K) ~ Zp.

o K alocal field, x(x) # p and pp C K. Then

Gal(K/K) = Zp X Zp = (o;7| 771 = [0 7]).

o is a Frobenius, 7 is a generator of the inertia subgroup and exact
sequence:

1 — Gal(K/Tk) — Gal(K/K) — Gal(Tk/K) — 1.
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Alp(G) := Ii<_mNIE‘,,[G/N] is the completed group algebra of G.

® {Alps(G)}nen the n-th power of augmentation of Alp(G).
o Define:
cn := dimp,(Alps(G)/Alpn11(G)), gocha(G,t) Zc,,

neN

Gn,:={g € G,g—1¢€ Alpy(G)}: Zassenhaus filtration of G,

Grad(G) := @ Gn/Gnr1, an = dimg,(Gn/Gny1).

neN
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Other filtrations

Sometimes, we are interested in other filtrations, let us cite :

© Lower central series: G, := [Gp_1; G]
@ p-lower central series: G, := G? [Gp_1; G]
© we also have an implicit characterisation of Zassenhaus filtrations:

. (oP G-
Gni= Gl | [G:; Gj].
I+j=n

We can quote [Labute 1985] and [Minaé-Tan 2015], who studied
these filtrations for some pro-p groups (free, one relators...).
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o If G:=7Z/pZ, then Alp(G) ~ F,[X]/(XP — 1), and:

1I—tP
gocha(G,t) = Pi(t) :== 1=
o If G :=7Zp, then Alp(G) ~ F,[X], and
(8, 0) = —
gocha(G, t) := —.

o If G is free with d generators, then Alp(G) ~ F,((X1;...; Xq4)), and

gocha(G,t) == Tt




o If G := Zg, then Alp(G) ~ F,[X1;...; X4], and

1

gocha(G,t) := =Lk




o If G := Zg, then Alp(G) ~ F,[X1;...; X4], and

1
(1—1t)d

gocha(G,t) :=

@ We can also compute gocha(G, t), when ¢d(G) < 2.
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Magnus isomorphism

Let G be a finitely presented pro-p group.

Minimal presentation: 1 - R — F — G — 1.

Name Z the kernel of the functorial epimorphism Alp(F) — Alp(G).
Fix {xj}1<j<q a lift in F of a basis of (F/FP[F; F]), and {/;} a lift in
F of a minimal system of generators of R/RP[R; F].

Magnus' isomorphism:

6 Alp(F) ~ Fy((X:1 < j < d))
xj = X; + L.
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Working on quotient of Series

@ Define E the algebra F,((Xj; 1 < j < d)) filtered by deg(X;) = 1,
{En} nen its filtration.

@ Denote /(R) := (pj := ¢(l; — 1)).
e E(G) the quotient filtered algebra E/I(R), filtration {E,(G)}pen.
@ Observe that:

d(Alpn(G)) = Ex(G)
Gr:={g € G, (g — 1) € Eo(G)},

Here G, denotes the Zassenhaus filtration of G.
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Gradation and polynomials

@ Denote & :=F,(Xy;...; Xa) =D, En/Ent1.
@ Then we can see &(G) := D, En(G)/En+1(G) as a quotient of &.

@ However, the kernel of & — &(G), that we call #(R) is difficult to
understand.

o Let n; be the weight of p;, i.e p; € Ey; \ Ej11. Define p; the image of
Pj in Enj/Enj—H C &.
e Observe (p;) C #(R). Mild criterion gives equality.
o Define r(t) :=3_, t".
@ Result:
gocha(G, t)(1 — dt + r(t)) > 1.
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Consequence Golod-Shafarevich criterion

Golod-Shafarevich Theorem
G finite implies for every t € [0; 1]:

1—dt+r(t)>0.

If G is finite, then

d? < 4r.
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Proposition (Jennings-Lazard Formula, Proposition 3.10 in Appendice

A [Lazard 1965])

gocha(G,t) = H Pn(t)®,  where Py(t) := (1 - tpn) . (1)

1—1tn
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Let us deduce some consequences of Formula (1):
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Consequences of Formula 1

Gocha's alternative, Theorem 3.11 of Appendice A.3 [Lazard 1965]

We have the following alternative:
e Either G is an analytic pro-p group, i.e Lie group over Qp, so there
exists an integer n such that a, = 0 and the sequence (¢p)nen has
polynomial growth with n.

@ Or G is not an analytic pro-p group, then for every n € N, a, # 0,
and the sequence (c,)nen does admit an exponential growth with n.

v
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Consequences of Formula 1

In 2016, Minac, Rogelstad and Téan gave an explicit formula relating
ap and ¢,, by introducing:

log(gocha(G, t)) := — Z (1- gocha (G,t)) Z b

neN neN

Proposition (Proposition 3.4 of [Mina¢, Rogelstad and Tan 2016])

If we write n = mpX, with m coprime to p, then
an = Wm + Wmp + -+ Wk,

1
where w;, := . Z,u(n/m)mbm and p is the Mébius function. (2)

m|n
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Cohomological dimension

@ We denote cd(G) the cohomological dimension of G.

o cd(G) =1if and only if G is free, if and only if gocha(G,t) := 1.

1
gocha(G,t) = T dt+r(e)

implies
° cd(G)=2 and dimFP(H2(G,FP)) =r(1).
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@ Assume Aut(G) contains a subgroup A of order g, where q is a prime
divisor of p — 1.

@ We denote by yx, the elements of Irr(A,[F,): Fp-irreducible characters
of A; and 1 the trivial character.

e For M a Fp[A]-module:
M, ={xeM; VoeA, o(x)=x(o)x}.
Focus on the graded set Grad(G), := D,(Gn/Gn+1)y and

aX = dimg, ((G/Gu1)y), € = dim, ((Alpa(G)/Alpns1(G))y).
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New results

Following ideas of [Filip 2011], we introduce:

gocha™( Z (Z cx ) t" € Ry, [A][[t]].

neN X

Where Rg,[A] is the semi-ring generated by x's over Z.

Theorem: [H. 2022, Theorem A]

gocha*(G,t) = H H Pn;x(t)"%,
neN x
1—(xt")”

where P (t) := T




Consequences

Denominate:

log(gocha*(G, t)) .= — Z (1= goch: (6.)) Z (Z bX > t".

neN neN X
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[Filip 2011]. We infer:



Consequences

Denominate:

log(gocha™(G, t)) = — Y (1 — gocha™(G, t)) = (Z b > o

n
neN neN X

Logarithm of series with coefficients in Rr,[A] @z Q were first studied by
[Filip 2011]. We infer:
Proposition: [H. 2022, Formula 2]

Write n := mp¥, with m coprime to p, and assume g is coprime with n.
Then:

X = X X
ap = Wy + Wy, + —i—mek

where  wX = . Zu(n/m)mbﬁm/n € Q.
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Properties of log

Proposition
Note that the log function enjoys the following properties:
e If P and Q are in 1+ tRp [A][[t]], then:

log(PQ) = log(P) +10g(Q),  and

log(1/P) = —log(P).

o Ifuisin tRp,[A][[t]], then

log (ﬁ) Zi u(i)y.

v=1
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Assume G infinite, then Pigeonhole principle: There exists at least
one x such that Grad(G), is infinite.

Main Question: For which x, is Grad(G)y infinite 7

Partial answer when G is not analytic.
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Assume that G is a noncommutative free pro-p group.
Then for every x, the graded set Grad(G), is infinite.
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G is free

Example

e A := (o) of order 2, and xo the unique nontrivial character.

o G is free generated by {x1;...; x4}, and o(x;) := x; 1.
@ Observe: 1
gocha (G, t) = ]_——dX()t" and
* L (dXO)n n
log(gocha*(G, t)) := Z ot

n

Then ¢, =d*", ., =0, =0, g, =d**
bipsy = d*""1/(2n+1), b3} =0,

bips =0, by, = d*"/(2n).

From [H. 2022, Formula 2], one obtains when p # 3:

_d*—d
B

ay® = wy° , and ai =0.
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Theorem: [H. 2022, Theorem B]

Assume that the polynomial Xeur,y,(t) admits a unique root of minimal
absolute value, which is real in ]0; 1[.
Then for every x, the graded set Grad(G), is infinite.
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Complete example when ¢d(G) = 2

o Take p =103 and g = 17. Fix the character xo: A — F1y3;0 — 8.

o Consider the pro-103 group G, generated by three generators x, y, z
and the two relations u = [x; y] and v = [x; z].

@ Then cd(G) =2 and

gocha(G,t) :=1/(1 — 3t + 2t).

@ Automorphism o on G, by:
o(x) == x8, o(y) == y® and o(2) ==z

83
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Example
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We compute:

1

and

ocha*(G,t) := ’
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Some computations

Example

One obtains from Formula (2): a =1 and a3 = 2.
We compute:

gocha* (G, t) := ! , and

1 — (xo0 + x0% + x03)t + (x03 + x0*)t?

log(gocha*(G, t)) = (xo+x0° +x0°)t+(x0®/2+ x0° +x0*/2+ Xx0*/2)t*+

(x0?/3 + x0® + x0” + x0®/3+ x03/3)t> + ...

[H. 2022, Formula 2] gives us:
° a§° =1, so we conclude that aX° = 0 when i # 5.

oa3°—a3—1 Then if i ¢ {0,7}, aX"— .
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Here:

Xeulpo(t) =1 —t — 1% + t.
The minimal root of 1 — t — t2 4+ t* is real, around 0.75.

Then by [H. 2022, Theorem B], for every x, Grad(G), is infinite.
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Arithmetic examples: Notations

Let p be an odd prime.

@ K a number field, with class number coprime to p and S a finite set of
prime ideals.

Sistame, ieforallp €S, Ng/g(p) =1 (mod p).

Ks is the p-maximal extension unramified outside S, and
Gs = Gal(Ks/K).
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Theorem [Koch 2002]

Let S := {p;} be a finite tame set of places of a number field K with class

number coprime to p, then Gs := Gal(Ks/K) admits a presentation with
|S| generators and |S| relations.




Koch's computations

Theorem [Koch 2002]

Let S := {p;} be a finite tame set of places of a number field K with class
number coprime to p, then Gs := Gal(Ks/K) admits a presentation with
|S| generators and |S| relations. Relations are defined modulo Fs:

l = [[lxi 1" (mod Fs).
JF#

The coefficient /; j is the linking number of p; and p;.
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Gs := Gal(Ks/K) admits 4 generators and 4 relations, so Gs is
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e Consider [Koch 2002, Example 11.15], take p = 3 and
So := {229,41}. Then the group Gs, := Gal(Qs,/Q) is finite.

o If we consider K := Q(/), the primes in Sy totally split in K. Here
Gs := Gal(Ks/K) admits 4 generators and 4 relations, so Gs is
infinite (by GS theorem).

In fact, cd(Gs) = 2.
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K, and the prime pg totally splits in K.



FAB example

e FAB, i.e every open subgroup has finite abelianization.

e Take p = 3, and consider K := Q(1/—163).

e Define A := Gal(K/Q) = Z/2Z, and xo the nontrivial irreducible
character of A over [Fp,.

e Put {p; :=31,p2:=19,p3 :=13,ps := 337, p5 := 7, ps := 43}.

e The class group of K is trivial, the primes p1, p2, p3, pa, ps are inert in
K, and the prime pg totally splits in K.

e Define S the primes above the previous set in K, and K the maximal
p-extension unramified outside S.
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e The graded spaces Grad(G)q and Grad(G),, are both infinite
dimensional.



FAB example

e Then A acts on G := Gal(Ks/K), which is FAB by Class Field

Theory.
e We can show that the pro-p group G is mild, so we obtain
gocha(Fp, t) == 1_7:_'_“2
e Furthermore:
gocha (Fp.t) =15 ¢ xg)tl—l— 6+ vo)2’

1
1—t—5t246t4

gochay, (Fp, t) ==

The graded spaces Grad(G)y and Grad(G),, are both infinite
dimensional.
Moreover, we obtain for instance:

a® =24, and a} = 39.
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