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Introduction

• Class group of cyclotomic fields, UFD and Fermat’s last theorem

• Kummer 1847, K := Q(ζ23).
• Hilbert Class field tower
• Golod-Shafarevich 1962

K := Q(
√
−2 ∗ 3 ∗ 5 ∗ 7 ∗ 11 ∗ 13).

• Current proof, Roquette-Wingberg.
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Pro-p groups and presentations

Let p be a prime, and G be a pro-p group: a projective limit of
p-groups.

Equivalently: topological group, compact Hausdorff, totally
disconnected and xp

n → 1, for x in G .
d is the minimal number of topological generators of G .
F free pro-p group with d generators.
Surjection F → G , with kernel R .
r is the minimal number of generators of R as a closed normal
subgroup of F .
d = dimFp H

1(G ;Fp) = dimFp(G/Gp[G ;G ]) and
r = dimFp H

2(G ;Fp) = dimFp(R/R
p[R;F ]).
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Groups examples

Example
Finite examples are p-groups.

Infinite examples: Zp, Zd
p , F .

Pro-p completion of a group: Take G a group, introduce:

Ĝ := lim←−
N

G/N.

We have F1 = Zp, and Fn = ̂Fn−1 ∗ Zp.
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Galois Theoretical examples

Example

K a field, K̂ its maximal p-extension, consider Gal(K̂/K ).

K a finite field, Gal(K̂/K ) ≃ Zp.
K a local field, TK its p-maximal unramified extension:
Gal(TK/K ) ≃ Zp.
K a local field, χ(κ) ̸= p and µp ⊂ K . Then

Gal(K̂/K ) ≃ Zp ⋊ Zp := ⟨σ; τ | τ |κ|−1 = [σ; τ ]⟩.

σ is a Frobenius, τ is a generator of the inertia subgroup and exact
sequence:

1→ Gal(K̂/TK )→ Gal(K̂/K )→ Gal(TK/K )→ 1.



Galois Theoretical examples

Example

K a field, K̂ its maximal p-extension, consider Gal(K̂/K ).
K a finite field, Gal(K̂/K ) ≃ Zp.

K a local field, TK its p-maximal unramified extension:
Gal(TK/K ) ≃ Zp.
K a local field, χ(κ) ̸= p and µp ⊂ K . Then

Gal(K̂/K ) ≃ Zp ⋊ Zp := ⟨σ; τ | τ |κ|−1 = [σ; τ ]⟩.

σ is a Frobenius, τ is a generator of the inertia subgroup and exact
sequence:

1→ Gal(K̂/TK )→ Gal(K̂/K )→ Gal(TK/K )→ 1.



Galois Theoretical examples

Example

K a field, K̂ its maximal p-extension, consider Gal(K̂/K ).
K a finite field, Gal(K̂/K ) ≃ Zp.
K a local field, TK its p-maximal unramified extension:
Gal(TK/K ) ≃ Zp.

K a local field, χ(κ) ̸= p and µp ⊂ K . Then

Gal(K̂/K ) ≃ Zp ⋊ Zp := ⟨σ; τ | τ |κ|−1 = [σ; τ ]⟩.

σ is a Frobenius, τ is a generator of the inertia subgroup and exact
sequence:

1→ Gal(K̂/TK )→ Gal(K̂/K )→ Gal(TK/K )→ 1.



Galois Theoretical examples

Example

K a field, K̂ its maximal p-extension, consider Gal(K̂/K ).
K a finite field, Gal(K̂/K ) ≃ Zp.
K a local field, TK its p-maximal unramified extension:
Gal(TK/K ) ≃ Zp.
K a local field, χ(κ) ̸= p and µp ⊂ K . Then

Gal(K̂/K ) ≃ Zp ⋊ Zp := ⟨σ; τ | τ |κ|−1 = [σ; τ ]⟩.

σ is a Frobenius, τ is a generator of the inertia subgroup and exact
sequence:

1→ Gal(K̂/TK )→ Gal(K̂/K )→ Gal(TK/K )→ 1.



Galois Theoretical examples

Example

K a field, K̂ its maximal p-extension, consider Gal(K̂/K ).
K a finite field, Gal(K̂/K ) ≃ Zp.
K a local field, TK its p-maximal unramified extension:
Gal(TK/K ) ≃ Zp.
K a local field, χ(κ) ̸= p and µp ⊂ K . Then

Gal(K̂/K ) ≃ Zp ⋊ Zp := ⟨σ; τ | τ |κ|−1 = [σ; τ ]⟩.

σ is a Frobenius, τ is a generator of the inertia subgroup and exact
sequence:

1→ Gal(K̂/TK )→ Gal(K̂/K )→ Gal(TK/K )→ 1.



Table of Contents

1 Notions on pro-p groups

2 Filtrations, Gocha’s series and Mild groups

3 Results on Equivariant case

4 Examples



Notations

Alp(G ) := lim←−N
Fp[G/N] is the completed group algebra of G .

{Alpn(G )}n∈N the n-th power of augmentation of Alp(G ).

Define:

cn := dimFp(Alpn(G )/Alpn+1(G )), gocha(G , t) :=
∑
n∈N

cnt
n.

Gn := {g ∈ G ; g − 1 ∈ Alpn(G )}: Zassenhaus filtration of G ,

Grad(G ) :=
⊕
n∈N

Gn/Gn+1, an := dimFp(Gn/Gn+1).
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Other filtrations

Sometimes, we are interested in other filtrations, let us cite

:
1 Lower central series: Gn := [Gn−1;G ]

2 p-lower central series: Gn := Gp
n−1[Gn−1;G ]

3 we also have an implicit characterisation of Zassenhaus filtrations:

Gn := Gp
⌈n/p⌉

∏
i+j=n

[Gi ;Gj ].

We can quote [Labute 1985] and [Mináč-Tân 2015], who studied
these filtrations for some pro-p groups (free, one relators...).
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Example
If G := Z/pZ, then Alp(G ) ≃ Fp[X ]/(X p − 1), and:

gocha(G , t) = P1(t) :=
1− tp

1− t
.

If G := Zp, then Alp(G ) ≃ Fp[[X ]], and

gocha(G , t) :=
1

1− t
.

If G is free with d generators, then Alp(G ) ≃ Fp⟨⟨X1; . . . ;Xd⟩⟩, and

gocha(G , t) :=
1

1− dt
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Example

If G := Zd
p , then Alp(G ) ≃ Fp[[X1; . . . ;Xd ]], and

gocha(G , t) :=
1

(1− t)d
.

We can also compute gocha(G , t), when cd(G ) ≤ 2.
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Magnus isomorphism

Let G be a finitely presented pro-p group.
Minimal presentation: 1→ R → F → G → 1.

Name R the kernel of the functorial epimorphism Alp(F )→ Alp(G ).
Fix {xj}1≤j≤d a lift in F of a basis of (F/F p[F ;F ]), and {lj} a lift in
F of a minimal system of generators of R/Rp[R;F ].
Magnus’ isomorphism:

ϕ : Alp(F ) ≃ Fp⟨⟨Xj ; 1 ≤ j ≤ d⟩⟩
xj 7→ Xj + 1.
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Working on quotient of Series

Define E the algebra Fp⟨⟨Xj ; 1 ≤ j ≤ d⟩⟩ filtered by deg(Xj) = 1,
{En}n∈N its filtration.

Denote I (R) := ⟨ρj := ϕ(lj − 1)⟩.
E (G ) the quotient filtered algebra E/I (R), filtration {En(G )}n∈N.
Observe that:

ϕ(Alpn(G )) = En(G )

Gn := {g ∈ G ;ϕ(g − 1) ∈ En(G )},

Here Gn denotes the Zassenhaus filtration of G .
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Gradation and polynomials

Denote E := Fp⟨X1; . . . ;Xd⟩ =
⊕

n En/En+1.

Then we can see E (G ) :=
⊕

n En(G )/En+1(G ) as a quotient of E .
However, the kernel of E → E (G ), that we call I (R) is difficult to
understand.
Let nj be the weight of ρj , i.e ρj ∈ Enj \ Enj+1. Define ρj the image of
ρj in Enj/Enj+1 ⊂ E .
Observe ⟨ρj⟩ ⊂ I (R). Mild criterion gives equality.
Define r(t) :=

∑
j t

nj .
Result:

gocha(G , t)(1− dt + r(t)) ≥ 1.
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Consequence Golod-Shafarevich criterion

Golod-Shafarevich Theorem
G finite implies for every t ∈ [0; 1]:

1− dt + r(t) > 0.

Corollary
If G is finite, then

d2 < 4r .
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Known results

Computing an is in general more difficult.

Proposition (Jennings-Lazard Formula, Proposition 3.10 in Appendice
A [Lazard 1965])

gocha(G , t) =
∏
n∈N

Pn(t)
an , where Pn(t) :=

(
1− tpn

1− tn

)
. (1)

Let us deduce some consequences of Formula (1):
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Consequences of Formula 1

Gocha’s alternative, Theorem 3.11 of Appendice A.3 [Lazard 1965]
We have the following alternative:

Either G is an analytic pro-p group, i.e Lie group over Qp, so there
exists an integer n such that an = 0 and the sequence (cn)n∈N has
polynomial growth with n.

Or G is not an analytic pro-p group, then for every n ∈ N, an ̸= 0,
and the sequence (cn)n∈N does admit an exponential growth with n.



Consequences of Formula 1

Gocha’s alternative, Theorem 3.11 of Appendice A.3 [Lazard 1965]
We have the following alternative:

Either G is an analytic pro-p group, i.e Lie group over Qp, so there
exists an integer n such that an = 0 and the sequence (cn)n∈N has
polynomial growth with n.
Or G is not an analytic pro-p group, then for every n ∈ N, an ̸= 0,
and the sequence (cn)n∈N does admit an exponential growth with n.



Consequences of Formula 1

In 2016, Mináč, Rogelstad and Tân gave an explicit formula relating
an and cn, by introducing:

log(gocha(G , t)) := −
∑
n∈N

(1− gocha(G , t))n

n
:=
∑
n∈N

bnt
n.

Proposition (Proposition 3.4 of [Mináč, Rogelstad and Tân 2016])

If we write n = mpk , with m coprime to p, then

an = wm + wmp + · · ·+ wmpk ;

where wn :=
1
n

∑
m|n

µ(n/m)mbm and µ is the Möbius function. (2)
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Cohomological dimension

We denote cd(G ) the cohomological dimension of G .

cd(G ) = 1 if and only if G is free, if and only if gocha(G , t) := 1
1−dt .

gocha(G , t) :=
1

1− dt + r(t)
,

implies
cd(G ) = 2 and dimFp(H

2(G ,Fp)) = r(1).
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Eigenspaces

Assume Aut(G ) contains a subgroup ∆ of order q, where q is a prime
divisor of p − 1.

We denote by χ, the elements of Irr(∆,Fp): Fp-irreducible characters
of ∆; and 1 the trivial character.
For M a Fp[∆]-module:

Mχ := {x ∈ M; ∀σ ∈ ∆, σ(x) = χ(σ)x}.

Focus on the graded set Grad(G )χ :=
⊕

n(Gn/Gn+1)χ and

aχn := dimFp((Gn/Gn+1)χ), cχn := dimFp((Alpn(G )/Alpn+1(G ))χ).
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New results

Following ideas of [Filip 2011], we introduce:

gocha∗(G , t) :=
∑
n∈N

(∑
χ

cχn χ

)
tn ∈ RFp [∆][[t]].

Where RFp [∆] is the semi-ring generated by χ’s over Z.

Theorem: [H. 2022, Theorem A]

gocha∗(G , t) =
∏
n∈N

∏
χ

Pn;χ(t)
aχn ,

where Pn;χ(t) :=
1− (χtn)p

1− χtn
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Logarithm of series with coefficients in RFp [∆]⊗Z Q were first studied by
[Filip 2011]. We infer:
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Properties of log

Proposition
Note that the log function enjoys the following properties:

If P and Q are in 1 + tRFp [∆][[t]], then:

log(PQ) = log(P) + log(Q), and

log(1/P) = −log(P).

If u is in tRFp [∆][[t]], then

log
(

1
1− u(t)

)
=

∞∑
ν=1

u(t)ν

ν
.
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Question

Assume G infinite, then Pigeonhole principle: There exists at least
one χ such that Grad(G )χ is infinite.

Main Question: For which χ, is Grad(G )χ infinite ?

Partial answer when G is not analytic.
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G is free

Theorem C

Assume that G is a noncommutative free pro-p group.
Then for every χ, the graded set Grad(G )χ is infinite.



G is free

Example
∆ := ⟨σ⟩ of order 2, and χ0 the unique nontrivial character.
G is free generated by {x1; . . . ; xd}, and σ(xi ) := x−1

i .

Observe:
gocha∗(G , t) :=

1
1− dχ0t

, and

log(gocha∗(G , t)) :=
∑
n

(dχ0)
n

n
tn.

Then c12n = d2n, c12n+1 = 0, cχ0
2n = 0, cχ0

2n+1 = d2n+1.
bχ0
2n+1 := d2n+1/(2n + 1), bχ0

2n = 0,
bχ0
2n+1 = 0, b12n = d2n/(2n).

From [H. 2022, Formula 2], one obtains when p ̸= 3:

aχ0
3 = wχ0

3 =
d3 − d

3
, and a13 = 0.
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cd(G ) = 2

Theorem: [H. 2022, Theorem B]
Assume that the polynomial χeul ,χ0(t) admits a unique root of minimal
absolute value, which is real in ]0; 1[.

Then for every χ, the graded set Grad(G )χ is infinite.
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Complete example when cd(G ) = 2

Example

Take p = 103 and q = 17. Fix the character χ0 : ∆→ F×
103;σ 7→ 8.

Consider the pro-103 group G , generated by three generators x , y , z
and the two relations u = [x ; y ] and v = [x ; z ].
Then cd(G ) = 2 and

gocha(G , t) := 1/(1− 3t + 2t2).

Automorphism σ on G , by:
σ(x) := x8, σ(y) := y82

and σ(z) := z83
.
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Some computations

Example
One obtains from Formula (2): a2 = 1 and a3 = 2.

We compute:

gocha∗(G , t) :=
1

1− (χ0 + χ02 + χ03)t + (χ03 + χ04)t2
, and

log(gocha∗(G , t)) = (χ0+χ0
2+χ0

3)t+(χ0
6/2+χ0

5+χ0
4/2+χ0

2/2)t2+

(χ0
9/3 + χ0

8 + χ0
7 + χ0

6/3 + χ0
3/3)t3 + . . . .

[H. 2022, Formula 2] gives us:

• a
χ5

0
2 = 1, so we conclude that aχ

i
0

2 = 0 when i ̸= 5.

• a
χ7

0
3 = a13 = 1. Then if i /∈ {0, 7}, aχ

i
0

3 = 0.
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Example
Here:

χeul ,χ0(t) := 1− t − t2 + t4.

The minimal root of 1− t − t2 + t4 is real, around 0.75.

Then by [H. 2022, Theorem B], for every χ, Grad(G )χ is infinite.
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Arithmetic examples: Notations

Let p be an odd prime.
K a number field, with class number coprime to p and S a finite set of
prime ideals.

S is tame, i.e for all p ∈ S , NK/Q(p) ≡ 1 (mod p).
KS is the p-maximal extension unramified outside S , and
GS := Gal(KS/K ).
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Koch’s computations

Theorem [Koch 2002]
Let S := {pi} be a finite tame set of places of a number field K with class
number coprime to p, then GS := Gal(KS/K) admits a presentation with
|S | generators and |S | relations.

Relations are defined modulo F3:

li ≡
∏
j ̸=i

[xi ; xj ]
li,j (mod F3).

The coefficient li ,j is the linking number of pi and pj .
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Examples

Consider [Koch 2002, Example 11.15], take p = 3 and
S0 := {229, 41}. Then the group GS0 := Gal(QS0/Q) is finite.

If we consider K := Q(i), the primes in S0 totally split in K . Here
GS := Gal(KS/K ) admits 4 generators and 4 relations, so GS is
infinite (by GS theorem).
In fact, cd(GS) = 2.
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FAB example

• FAB, i.e every open subgroup has finite abelianization.

• Take p = 3, and consider K := Q(
√
−163).

• Define ∆ := Gal(K/Q) = Z/2Z, and χ0 the nontrivial irreducible
character of ∆ over Fp.
• Put {p1 := 31, p2 := 19, p3 := 13, p4 := 337, p5 := 7, p6 := 43}.
• The class group of K is trivial, the primes p1, p2, p3, p4, p5 are inert in

K, and the prime p6 totally splits in K.
• Define S the primes above the previous set in K, and KS the maximal

p-extension unramified outside S .
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FAB example

• Then ∆ acts on G := Gal(KS/K), which is FAB by Class Field
Theory.
• We can show that the pro-p group G is mild, so we obtain

gocha(Fp, t) :=
1

1− 7t + 7t2
.

• Furthermore:

gocha∗(Fp, t) :=
1

1− (6 + χ0)t + (6 + χ0)t2
,

gochaχ0(Fp, t) :=
1

1− t − 5t2 + 6t4
.

• The graded spaces Grad(G )1 and Grad(G )χ0 are both infinite
dimensional.
• Moreover, we obtain for instance:

aχ0
3 = 24, and a13 = 39.
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