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What is the Riemann zeta function?

The Riemann zeta function is given by
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where s = � + it 2 C, p is prime and <(s) > 1.

The Riemann Zeta Function can be analytically extended to C \ {1} by the
functional equation

⇣(s) = 2s⇡s�1 sin
⇣⇡s
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�(1� s)⇣(1� s).

trivial zeroes are at s = �2n where n = 1, 2, 3...
Riemann’s Hypothesis: all non-trivial zeroes lie on the 1/2 line.



Main interest: extreme values of zeta

We are interested in the extreme values of the Riemann Zeta Function.

Lindelöf’s Hypothesis: ⇣(1/2 + it) = O(t✏) for every positive ✏. We do not know
the correct order of magnitude of the global maximum – this is a hard problem!
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Simpler question: study the local maximum over a short interval.

Choose ⌧ ⇠ U[0,T ], where T is a large value on the 1/2 line. Consider a
neighborhood I of varying length around ⌧ . Let h 2 I.

We want to study log |⇣(1/2 + i(⌧ + h))| over short intervals.
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We can study the local maximum over di↵erent interval sizes...

max
|h| 1

log T

|⇣(1/2 + i(⌧ + h))| =??

max
|h|1

|⇣(1/2 + i(⌧ + h))| =??

max
|h|(logT )✓

|⇣(1/2 + i(⌧ + h))| =??



The Fyodorov-Hiary-Keating Conjecture

Fyodorov-Hiary-Keating (2012) Conjecture:

max
|h|1

|⇣(1/2 + i(⌧ + h))| = logT

(log logT )3/4
e
MT (⌧)

where MT (⌧) ! M as T ! 1 and

P(M > y) ⌧ ye
�2y

as y ! 1.

Connection to probability:

maximum of branching random walks

(collection of log-correlated random variables): same leading and subleading order!

maximum of IID random variables

(a collection of independent and identically distributed random variables (IID)):
same leading order, but di↵erent subleading order exponent of 1/4.
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Proving the Fyodorov-Hiary-Keating Conjecture

Arguin-Bourgade-Radziwill (2020, 2023):
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Arguin-Bailey (2022): Let ✓ > 0. Then

P
 

max
|h|(logT )✓

|⇣(1/2 + i(⌧ + h))| > (logT )
p
1+✓

(log logT )
1

4
p

1+✓

e
y

!
⌧ 1e�2

p
1+✓y

e
�y2/ log logT

When ✓ ! 0, the right tail distribution and subleading orders are di↵erent! Why?
Recently, Arguin-Dubach-Hartung studied a random model of zeta and addressed
the subleading order exponent discrepancy.



What is the random model of zeta?

Let ⌧ ⇠ U[0,T ] and h 2 I. Then

log ⇣(1/2 + i(⌧ + h)) ⇡ log
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Intervals of Varying Length

Define ✓ = (log logT )�↵ where ↵ 2 (0, 1). We study the process (XT (h), h 2 I)
over intervals I = [�(logT )✓, (logT )✓]. This implies

|I| = 2(logT )✓ = 2 exp((log logT )1�↵).

As ↵ ranges between 0 and 1, the size of the window ranges between 1 and logT .

window size

logt
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Covariance structure of the random model

For all h, h0 2 I, we have the following covariance structure of the process:

E[XT (h),XT (h
0
)]

=
1
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that depends on the distance between the two points:

E[XT (h)XT (h
0
)] =

(
1
2 log |h � h

0|�1
+ O(1) if |h � h

0|  1

O(|h � h
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) if |h � h
0| > 1

Intervals of size one: XT (h),XT (h
0
) are log correlated!

Larger intervals: XT (h),XT (h
0
) are weakly correlated!

We expect hybrid statistics as the interval size varies in length.



Random Model results

XT (h) denotes the random model of log |⇣(1/2 + i(⌧ + h))|.

This implies eXT (h) ⇡ |⇣(1/2 + i(⌧ + h))|.

Arguin-Dubach-Hartung (2024):
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The main result

Theorem (C. 2024)

Let y 2 R+ and y = O(
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Moment over intervals of varying length

By the main result, we prove the following corollary for the �c = 2
p
1 + ✓ moment of a

random model of |⇣( 12 + i(⌧ + h)).

Corollary

For �c = 2
p
1 + ✓ and ↵ 2 (0, 1), we have for A > 0,
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for all t 2 [T , 2T ] except possibly on a subset of Lebesgue measure ⌧ 1/A.

Theorem (Harper 2019)

Uniformly for all large T , we have
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for all t 2 [T , 2T ] except possibly on a subset of Lebesgue measure ⌧ (log A)^
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log log T

A

This result corresponds to when ↵ = 1 in the corollary.
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Moment over intervals of varying length

Following the techniques of Arguin-Bailey, a sharper bound for ↵ 2 (0, 1/2] holds:

Z
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|⇣(1/2 + i(⌧ + h)|�c dh ⌧ A(logT )
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What is special about the correction?

Let’s compare:

↵ 2 (0, 1/2)

regime: IID

correction: 1

↵ 2 (1/2, 1)

regime: hybrid

correction: 1
(log logT )↵�1/2

↵ = 1

regime: log-correlated

correction: 1p
log logT

There is a distinctive transition at ↵ = 1/2 to the IID regime, i.e. for intervals that
have length greater than (exp(

p
log logT ).



Proving the main result: first identify a BRW in the model

Recall that

E[XT (h)XT (h
0
)] =

(
1
2 log |h � h

0|�1
+ O(1) if |h � h

0|  1

O(|h � h
0|�1

) if |h � h
0| > 1

Interval of order one: the random variables are log-correlated!

A branching random walk is a collection of log-correlated random variables!
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Approximate BRW in the random model of zeta

Recall that the random model of log |⇣| is
Ch Σ Recappth
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Approximate BRW in the random model of zeta

Recall that the random model of log |⇣| is
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wecanexpresstherandommodelof zeta as a sum of IID increments as a BRW
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Random model of zeta over an interval of order one
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Big picture: analyze many independent BRW’s

Consider once again the covariance:

E[St(h)St(h
0
)] =

(
1
2 log |h � h

0|�1
+ O(1) if |h � h

0|  1

O(|h � h
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) if |h � h| > 1

For |h � h
0
| > 1, there is a strong decoupling. We can think of the process

(St(h), |h|  (logT )
✓
) as behaving like (logT )

✓
independent copies of (St(h), |h|  1).

We are essentially studying the extreme values of (logT )
✓
independent branching

random walks!



Proof ideas

We want an upper bound for

P
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Byself similarity of BRW's maySkch mktg we can assume walks are

selow a barrier
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Construct a goodevent based on the hitting time
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Apply the hitting time method

Decompose the event over when the maximum of the process crosses the barrier, say at

k + 1:
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◆

=

t�1X

k=0

P
✓

max
|h|(log T )✓

St(h) > M(t), max
|h|(log T )✓

Sj(h) < M(j), 8j  k,

max
|h|(log T )✓

Sk+1(h) > M(k + 1).

We drop the first event and narrow our focus to the following sum:
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To obtain good estimates, we divide the range of k into two. Why?



Remove the barrier for a small range of k

First range of k (drop the barrier):

Discretize the interval and perform a union bound on e
k+t✓ points.

By a Gaussian estimate, we have
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Proof of main result: Estimate the second range of k

Second range (keep the barrier:) Discretize the interval as before and perform a union

bound.
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Proof of main result: Estimate the second range of k

BallotTheorem
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Proof of main result: Estimate the second range of k
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Decompose the event over all possible values u of the process at time k. The probability

becomes

P (Sj(0) < M(j); 8j < k, Sk+1(0) > M(k + 1))

=

X

uM(k)
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By the Ballot Theorem, we have
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Putting everything together and skipping some details, we have an expression
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What does this mean for the Riemann zeta function??

Conjecture for the Riemann zeta function

Let 0 < ↵ < 1 and ✓ = (log logT )
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Conjecture for moments of zeta over short varying intervals
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The End

Thank you for listening!
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