Birational geometry of quiver varieties

Gwyn Bellamy

jt. with A. Craw, T. Schedler (S. Rayan and H. Weiss)

Thursday, 25th June 2020

- Introduction
- Quiver varieties
- Anisotropic roots
- Isotropic roots
- Hyperpolygon spaces

- Quiver varieties, as introduced by Nakajima, are ubiquitous in geometric representation theory.
- Large class of examples of symplectic singularities, together with an associated symplectic resolution given by variation of geometric invariant theory (VGIT).

Questions:

- (A) Can one obtain all symplectic resolutions via VGIT?
- (B) What is the birational transformation that occurs when we cross a GIT wall?

- $Q = (Q_0, Q_1)$ a finite quiver with double \overline{Q} .
- $v \in \mathbb{N}^{Q_0}$ dimension vector.
- Space of representations of dimension v:

$$\operatorname{Rep}(\overline{Q}, v) = \bigoplus_{a \in \overline{Q}_1} \operatorname{Hom}(\mathbb{C}^{t(a)}, \mathbb{C}^{h(a)}).$$

- Carries (Hamiltonian) action of $G(v) = \prod_{i \in Q_0} GL(\mathbb{C}^{v_i})$.
- Corresponding moment map

$$\mu \colon \operatorname{Rep}(\overline{Q}, \mathbf{v}) \to \mathfrak{g}(\mathbf{v})$$

where $\mathfrak{g}(v) = \operatorname{Lie} G(v)$.

Definition

The quiver variety associated to (Q, v) is

$$\mathfrak{M}_0 := \mu^{-1}(0) // G(v).$$

Proposition (B-Schedler)

 \mathfrak{M}_0 has symplectic singularities.

Q. When does \mathfrak{M}_0 admit a symplectic resolution?

- \mathbb{Z}^{Q_0} has symmetric form (-,-).
- Applying Crawley-Boevey's factorization,

$$\mathfrak{M}_0(\mathbf{v}) \cong \mathfrak{M}_0(\mathbf{v}_1) \times \cdots \times \mathfrak{M}_0(\mathbf{v}_k)$$

where each $v_i \leq v$ is either (1) $v_i = n\delta_i$ for δ_i minimal imaginary, $(\delta_i, \delta_i) = 0$; or (2) anisotropic root: $(v_i, v_i) < 0$.

- $\mathfrak{M}_0(v)$ admits a symplectic resolution iff every factor $\mathfrak{M}_0(v_i)$ admits a symplectic resolution.
- Hilbert schemes give symplectic resolutions in case (1).

In the case where v is an anisotropic root, (v, v) < 0, have:

Theorem (B-Schedler)

 $\mathfrak{M}_0(v)$ admits a symplectic resolution iff v indivisible or "(2,2) case".

The "(2,2) case" is v = 2u with u indivisible, (u, u) = -2. This situation is exceptional.

Assume v anisotropic and indivisible. Set

$$\Lambda = \left\{ \theta \in \mathbb{Q}^{Q_0} \, | \, \theta(\nu) = 0 \right\}.$$

For each $\theta \in \Lambda$, consider space

$$\mu^{-1}(0)^{ heta} = \left\{ M \in \mu^{-1}(0) \, | \, heta(\dim M') \leq 0, \, orall \, M' \, ext{subrep } M
ight\}$$

space of θ -semistable objects.

Definition

$$\mathfrak{M}_{\theta} := \mu^{-1}(0)^{\theta} / / G(v).$$

Always a Poisson morphism $\mathfrak{M}_{\theta} \to \mathfrak{M}_{0}$.

 Λ^{reg} set of all $\theta \in \Lambda$ with \mathfrak{M}_{θ} smooth.

Proposition (B-Craw-Schedler = BCS)

 Λ^{reg} complement to finitely many hyperplanes H_{α} .

- Hyperplanes H_{α} are either "interior" or "boundary", depending on α .
- Fix $C \subset \Lambda^{\text{reg}}$ a chamber and $\theta \in C$.
- *C* lies in a unique (closed) chamber *F* of the boundary arrangement.

Slice to arrangement in $\Lambda = \mathbb{Q}^3$, showing chambers in *F* (boundary, interior).

- Define $L_C \colon \Lambda \to \operatorname{Pic}(\mathfrak{M}_{\theta})_{\mathbb{Q}}$ by

$$L_{\mathcal{C}}(\vartheta) = \bigotimes_{i \in Q_0} (\det \mathcal{R}_i)^{\otimes \vartheta_i}$$

- Here \mathcal{R}_i tautological bundle of rank v_i .

Theorem (BCS)

• L_C is an isomorphism with $L_C(C) = \operatorname{Amp}(\mathfrak{M}_{\theta})$.

2)
$$L_C = L_{C'}$$
 if $C, C' \subset F$.

3
$$L_C(F) = Mov(\mathfrak{M}_{\theta}).$$

Surjectivity of L_C requires McGerty-Nevins theorem on surjectivity of the Kirwan map.

Corollary (BCS)

Let v be arbitrary. Every (projective) symplectic resolution of $\mathfrak{M}_0(v)$ is given by a quiver variety.

Need to exclude (2,2) case above.

Corollary (BCS)

Assume v a root. If $\mathfrak{M}_0(v)$ admits a symplectic resolution then

#resolutions = $|\pi_0(F \cap \Lambda^{\text{reg}})|$.

Assume v is not indivisible.

Proposition (B-Schedler)

For generic $\theta \in \Lambda$, $\mathfrak{M}_{\theta} \to \mathfrak{M}_{0}$ is a \mathbb{Q} -factorial terminalization.

BCS:

- Chamber structure still exists.
- L_C is always injective.
- Know to be surjective in certain cases.
- Expect it always to be an isomorphism.

All results make sense in this generality provided L_C is an isomorphism.

- Q affine Dynkin quiver.
- $v = n\delta$ with δ minimal imaginary root.
- $\Delta = \{e_1, \ldots, e_r\}$ simple roots in **finite** root system Φ .

Hyperplanes

- $\mathcal{A}_I = \{\beta + m\delta \mid \beta \in \Phi, -n < m < n, m \neq 0\}.$ - $\mathcal{A}_B = \{\delta\} \cup \Phi^+.$

Then

- H_{α} for $\alpha \in \mathcal{A}_I$ are "interior" hyperplane.
- H_{α} for $\alpha \in \mathcal{A}_B$ are "boundary" hyperplane.

Theorem (B-Craw)

-
$$\Lambda^{\mathsf{reg}} = \Lambda \smallsetminus \bigcup_{\alpha} H_{\alpha}$$
, where $\alpha \in \mathcal{A}_I \cup \mathcal{A}_B$.

$$F = \{\theta \in \Lambda \,|\, \theta(\delta) \geq 0, \theta(e_i) \geq 0, i = 1, \dots, r\}.$$

 W_{Φ} be the (finite) Weyl group of Φ .

Theorem (B-Craw)

- $W = \mathfrak{S}_2 \times W_{\Phi}$ acts on Λ with fundamental domain F.
- $\mathfrak{M}_{\mathcal{C}} \cong \mathfrak{M}_{\mathcal{C}'}$ iff $\mathcal{C}' = w(\mathcal{C})$ some $w \in W$.

Application

- $\Gamma \subset SL(2,\mathbb{C})$ finite group associated to Q.
- $\mathfrak{S}_n \wr \Gamma = \mathfrak{S}_n \rtimes \Gamma^n$ acts on \mathbb{C}^{2n} .
- Symplectic resolution of quotient given by

$$\operatorname{Hilb}^{n}\left(\widetilde{\mathbb{C}^{2}}/\Gamma\right) \to \mathbb{C}^{2n}/(\mathfrak{S}_{n}\wr\Gamma)$$

where $\widetilde{\mathbb{C}^2}/\Gamma$ minimal resolution of $\mathbb{C}^2/\Gamma.$

Corollary (B-Craw)

Every (projective) symplectic resolution of $\mathbb{C}^{2n}/(\mathfrak{S}_n \wr \Gamma)$ is of the form \mathfrak{M}_{θ} for some $\theta \in \Lambda^{\operatorname{reg}}$.

Hyperpolygon spaces

Let $n \ge 4$ and (Q, v) star quiver with n outer vertices.

- $\mathfrak{M}_{\theta}(n)$ a "hyperpolygon space".
- As a hyperhähler manifold, compactification of cotangent bundle of polygon moduli space.
- dim $\mathfrak{M}_{\theta} = 2(n-3)$.

A quotient singularity

- Notice for n = 4, $\mathfrak{M}_0 \cong \mathbb{C}^2/\mathrm{BD}_8$.

A quotient singularity

- Notice for
$$n = 4$$
, $\mathfrak{M}_0 \cong \mathbb{C}^2/\mathrm{BD}_8$.

Theorem (B-Schedler)

The group $Q_8 \times_{\mathbb{Z}_2} D_8$ acts on \mathbb{C}^4 such that $\mathbb{C}^4/(Q_8 \times_{\mathbb{Z}_2} D_8)$ admits a symplectic resolution.

Theorem (B,Donten–Bury-Wiśniewski)

The quotient $\mathbb{C}^4/(Q_8 \times_{\mathbb{Z}_2} D_8)$ admits 81 (projective) symplectic resolutions.

Theorem (B-Craw-Rayan-Schedler-Weiss)

As symplectic singularities,

$$\mathbb{C}^4/(Q_8 \times_{\mathbb{Z}_2} D_8) \cong \mathfrak{M}_0(5).$$

Easy to recover count of 81 from hyperplane arrangement in Λ .

Theorem (B-Craw-Rayan-Schedler-Weiss)

For $n \geq 4$, we have $\Lambda \cong \mathbb{Q}^n$ with

-
$$\Lambda^{\operatorname{reg}} = \{ \theta \mid \theta_1 \pm \theta_2 \pm \cdots \pm \theta_n \neq 0, \ \theta_1, \dots, \theta_n \neq 0 \}.$$

$$- F = \{\theta \mid \theta_i \ge 0\}.$$

-
$$W = \mathfrak{S}_2^n$$
.

Thanks for listening.