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Introduction

- Quiver varieties, as introduced by Nakajima, are ubiquitous in
geometric representation theory.

- Large class of examples of symplectic singularities, together
with an associated symplectic resolution given by variation of
geometric invariant theory (VGIT).

Questions:

(A) Can one obtain all symplectic resolutions via VGIT?

(B) What is the birational transformation that occurs when we
cross a GIT wall?
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Quiver varieties

- Q = (Q0,Q1) a finite quiver with double Q.

- v ∈ NQ0 dimension vector.

- Space of representations of dimension v :

Rep(Q, v) =
⊕
a∈Q1

Hom(Ct(a),Ch(a)).

- Carries (Hamiltonian) action of G (v) =
∏

i∈Q0
GL(Cvi ).

- Corresponding moment map

µ : Rep(Q, v)→ g(v)

where g(v) = LieG (v).
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Quiver varieties

Definition

The quiver variety associated to (Q, v) is

M0 := µ−1(0)//G (v).

Proposition (B-Schedler)

M0 has symplectic singularities.

Q. When does M0 admit a symplectic resolution?
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Factorization

- ZQ0 has symmetric form (−,−).

- Applying Crawley-Boevey’s factorization,

M0(v) ∼= M0(v1)× · · · ×M0(vk)

where each vi ≤ v is either

(1) vi = nδi for δi minimal imaginary, (δi , δi ) = 0; or
(2) anisotropic root: (vi , vi ) < 0.

- M0(v) admits a symplectic resolution iff every factor M0(vi )
admits a symplectic resolution.

- Hilbert schemes give symplectic resolutions in case (1).

Gwyn Bellamy Birational geometry of quiver varieties



Anisotropic roots

In the case where v is an anisotropic root, (v , v) < 0, have:

Theorem (B-Schedler)

M0(v) admits a symplectic resolution iff v indivisible or ”(2, 2)
case”.

The ”(2, 2) case” is v = 2u with u indivisible, (u, u) = −2. This
situation is exceptional.
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Anisotropic roots - birational geometry

Assume v anisotropic and indivisible. Set

Λ =
{
θ ∈ QQ0 | θ(v) = 0

}
.

For each θ ∈ Λ, consider space

µ−1(0)θ =
{
M ∈ µ−1(0) | θ(dimM ′) ≤ 0, ∀M ′ subrepM

}
space of θ-semistable objects.

Definition

Mθ := µ−1(0)θ//G (v).

Always a Poisson morphism Mθ →M0.
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Anisotropic roots - birational geometry

Λreg set of all θ ∈ Λ with Mθ smooth.

Proposition (B-Craw-Schedler = BCS)

Λreg complement to finitely many hyperplanes Hα.

- Hyperplanes Hα are either ”interior” or ”boundary”,
depending on α.

- Fix C ⊂ Λreg a chamber and θ ∈ C .

- C lies in a unique (closed) chamber F of the boundary
arrangement.
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Anisotropic roots - birational geometry

Slice to arrangement in Λ = Q3, showing chambers in F
(boundary,interior).

C

e⊥1

e⊥2
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Anisotropic roots - birational geometry

- Define LC : Λ→ Pic(Mθ)Q by

LC (ϑ) =
⊗
i∈Q0

(detRi )
⊗ϑi

- Here Ri tautological bundle of rank vi .

Theorem (BCS)

1 LC is an isomorphism with LC (C ) = Amp(Mθ).

2 LC = LC ′ if C ,C ′ ⊂ F .

3 LC (F ) = Mov(Mθ).

Surjectivity of LC requires McGerty-Nevins theorem on surjectivity
of the Kirwan map.
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Application

Corollary (BCS)

Let v be arbitrary. Every (projective) symplectic resolution of
M0(v) is given by a quiver variety.

Need to exclude (2, 2) case above.

Corollary (BCS)

Assume v a root. If M0(v) admits a symplectic resolution then

#resolutions = |π0(F ∩ Λreg)|.
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Q-factorial terminalizations

Assume v is not indivisible.

Proposition (B-Schedler)

For generic θ ∈ Λ, Mθ →M0 is a Q-factorial terminalization.

BCS:

- Chamber structure still exists.

- LC is always injective.

- Know to be surjective in certain cases.

- Expect it always to be an isomorphism.

All results make sense in this generality provided LC is an
isomorphism.
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Isotropic roots

- Q affine Dynkin quiver.

- v = nδ with δ minimal imaginary root.

- ∆ = {e1, . . . , er} simple roots in finite root system Φ.

Hyperplanes

- AI = {β + mδ |β ∈ Φ, −n < m < n,m 6= 0}.
- AB = {δ} ∪ Φ+.

Then

- Hα for α ∈ AI are ”interior” hyperplane.

- Hα for α ∈ AB are ”boundary” hyperplane.
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Isotropic roots

Theorem (B-Craw)

- Λreg = Λ r
⋃
αHα, where α ∈ AI ∪ AB .

- F = {θ ∈ Λ | θ(δ) ≥ 0, θ(ei ) ≥ 0, i = 1, . . . , r}.

WΦ be the (finite) Weyl group of Φ.

Theorem (B-Craw)

- W = S2 ×WΦ acts on Λ with fundamental domain F .

- MC
∼= MC ′ iff C ′ = w(C ) some w ∈W .
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Application

- Γ ⊂ SL(2,C) finite group associated to Q.

- Sn o Γ = Sn o Γn acts on C2n.

- Symplectic resolution of quotient given by

Hilbn
(
C̃2/Γ

)
→ C2n/(Sn o Γ)

where C̃2/Γ minimal resolution of C2/Γ.

Corollary (B-Craw)

Every (projective) symplectic resolution of C2n/(Sn o Γ) is of the
form Mθ for some θ ∈ Λreg.
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Hyperpolygon spaces
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Let n ≥ 4 and (Q, v) star quiver with n outer vertices.

- Mθ(n) a ”hyperpolygon space”.

- As a hyperhähler manifold, compactification of cotangent
bundle of polygon moduli space.

- dimMθ = 2(n − 3).
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A quotient singularity

- Notice for n = 4, M0
∼= C2/BD8.
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A quotient singularity

- Notice for n = 4, M0
∼= C2/BD8.

Theorem (B-Schedler)

The group Q8 ×Z2 D8 acts on C4 such that C4/(Q8 ×Z2 D8)
admits a symplectic resolution.

Theorem (B,Donten–Bury-Wísniewski)

The quotient C4/(Q8 ×Z2 D8) admits 81 (projective) symplectic
resolutions.
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A quotient singularity

Theorem (B-Craw-Rayan-Schedler-Weiss)

As symplectic singularities,

C4/(Q8 ×Z2 D8) ∼= M0(5).

Easy to recover count of 81 from hyperplane arrangement in Λ.

Theorem (B-Craw-Rayan-Schedler-Weiss)

For n ≥ 4, we have Λ ∼= Qn with

- Λreg = {θ | θ1 ± θ2 ± · · · ± θn 6= 0, θ1, . . . , θn 6= 0}.
- F = {θ | θi ≥ 0}.
- W = Sn

2.
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The End!

Thanks for listening.
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