Exact Lagrangians in conical symplectic resolutions

Filip Živanović

University of Oxford

zivanovic@maths.ox.ac.uk

Qolloquium: A Conference on Quivers, Representations, and Resolutions

June 25, 2020

Overview

1 On Conical Symplectic Resolutions

- **2** Exact Lagrangians in Conical Symplectic Resolutions
- 3 Example 1: Quiver varieties of type A
- 4 Example 2: Slodowy varieties of type A

A first example $\pi: T^*\mathbb{C}P^1 \to \mathbb{C}^2/(\mathbb{Z}/2)$

- $\pi: T^*\mathbb{C}P^1, \to \mathbb{C}^2/(\mathbb{Z}/2)$ blow up
- $(-1) \curvearrowright (z_1, z_2) = (-z_1, -z_2)$
- $t \cdot (z_1, z_2) = (tz_1, tz_2)$ contracts $\mathbb{C}^2/(\mathbb{Z}/2)$ to a point.
- Action lifts to $T^*\mathbb{C}P^1$, s.t. $t \cdot \omega_{\mathbb{C}} = t\omega_{\mathbb{C}}$
- \blacksquare $\pi^{-1}(0) = \mathbb{C}P^1$ Lagrangian

The \mathbb{R} -picture

Conical symplectic resolution

A conical symplectic resolution (CSR) of **weight** $k \in \mathbb{N}$ is

■ A projective C*-equivariant resolution,

$$\mathbb{C}^* \stackrel{\varphi}{\sim} \mathfrak{M}$$

$$\pi \downarrow$$

$$\mathbb{C}^* \stackrel{\varphi}{\sim} \mathfrak{M}_0$$

• \mathfrak{M}_0 normal affine holo^c Poisson variety whose \mathbb{C}^* -action contracts to a single fixed point:

$$\forall x \in \mathfrak{M}_0, \quad \lim_{t \to 0} t \cdot x = x_0,$$

Such actions we call **conical**.

• $(\mathfrak{M}, \omega_{\mathbb{C}})$ holo^c symplectic, $t \cdot \omega_{\mathbb{C}} = t^k \omega_{\mathbb{C}}$.

Examples of conical symplectic resolutions

- Resolutions of Du Val singularities
- Hilbert schemes of points on them
- Nakajima quiver varieties
- Springer resolutions, resolutions of Slodowy varieties
- Hypertoric varieties
- Slices in affine Grassmanians
- Higgs/Coulomb branches of moduli spaces (3d Gauge theories with $\mathcal{N}=4$ supersymmetry)
- All examples are complete hyperkähler manifolds.

Real sympectic structure on CSRs

■ Def: An exact real symplectic manifold $(M, \omega = d\theta)$ is a **Liouville manifold** when

$$(M \setminus K, \theta) \cong (\Sigma \times [1, +\infty), R\alpha)$$

where α is a positive contact form on Σ .

- Any CSR (\mathfrak{M}, φ) is canonically a Liouville manifold $(\mathfrak{M}, \omega_{J,K})$, where $\omega_{\mathbb{C}} = \omega_J + i\omega_K$ and $\omega_{J,K} =$ any linear combo of ω_J, ω_K .
- Hence, the **compact** $\mathcal{F}(\mathfrak{M})$ and the **wrapped** $\mathcal{W}(\mathfrak{M})$ Fukaya categories are well-defined.
- We are interested in closed exact Lagrangian submanifolds of $(\mathfrak{M}, \omega_{J,K})$ $(L \subset \mathfrak{M} \text{ exact means } \theta_{|L} \text{ is exact})$

Exact Lagrangians in CSRs

- When CSR $\pi: \mathfrak{M} \to \mathfrak{M}_0$ is of weight 1, its **core** $\mathfrak{L} = \pi^{-1}(0)$ is a complex Lagrangian subvariety.
- Otherwise **not**, e.g. $\mathsf{Hilb}^n(\mathbb{C}^2) \to \mathsf{Sym}^n(\mathbb{C}^2)$
- If \mathfrak{L}_{α} smooth, \mathfrak{L}_{α} is exact.
- All \mathfrak{L}_{α} are non-isotopic.

Theorem (Ž.'19)

Any weight-1 CSR $\mathfrak M$ has at least $N\geq 1$ smooth core components, hence non-isotopic exact Lagrangians. Here N is the number of different (commuting) conical weight-1 $\mathbb C^*$ -actions on $\mathfrak M$.

- We call the these **minimal components** of the core.
- Example: Du Val resolutions of type A: $\mathbb{C}^2/\mathbb{Z}/n \to \mathbb{C}^2/\mathbb{Z}/n$ The core is A_{n-1} tree of spheres and they are all minimal.

Floer theory of minimal components

- Fukaya category $\mathcal{F}(\mathfrak{M})$
- objects: closed exact Lagrangian submanifolds
- morphisms: $Mor(L_1, L_2) = CF^*(L_1, L_2)$ cohomologically: $HF^*(L_1, L_2)$

Proposition

- I Given a weight-1 CSR \mathfrak{M} , its minimal components are exact Lagrangians, hence $HF^*(\mathfrak{L}_{min},\mathfrak{L}_{min})\cong H^*(\mathfrak{L}_{min})$ for each minimal \mathfrak{L}_{min} .
- 2 For each pair \mathfrak{L}^1_{min} , \mathfrak{L}^2_{min} of minimal components we have $HF^*(\mathfrak{L}^1_{min},\mathfrak{L}^2_{min})\cong H^*(\mathfrak{L}^1_{min}\cap\mathfrak{L}^2_{min})$. 3 Given a triple \mathfrak{L}^1_{min} , \mathfrak{L}^2_{min} , \mathfrak{L}^3_{min} of minimal components, The Floer
- **3** Given a triple \mathfrak{L}^1_{min} , \mathfrak{L}^2_{min} , \mathfrak{L}^3_{min} of minimal components, The Floer product

$$HF^*(\mathfrak{L}^2_{min},\mathfrak{L}^3_{min})\otimes HF^*(\mathfrak{L}^1_{min},\mathfrak{L}^2_{min})\rightarrow HF^*(\mathfrak{L}^1_{min},\mathfrak{L}^3_{min})$$

is isomorphic to the convolution product.

Representations of a double quiver

■ Graph $Q = (I, E) \rightsquigarrow$ double quiver $Q^{\#} = (I, H := E \sqcup \bar{E})$

$$\circ \mathop{\longrightarrow} \circ \mathop{\longleftarrow} \circ \mathop{\longleftarrow} \circ \mathop{\longleftarrow} \circ$$

Double quiver of A_4

■ The space of Framed representations of double quiver

$$M(Q, V, W) = \bigoplus_{h \in H} \mathsf{Hom}(V_{s(h)}, V_{t(h)}) \bigoplus_{i \in I} \mathsf{Hom}(V_i, W_i) \bigoplus_{i \in I} \mathsf{Hom}(W_i, V_i)$$

• $GL(V) = \prod_{i \in I} GL(V_i) \curvearrowright M(Q, V, W)$ by conjugation.

Quiver varieties

- $GL(V) = \prod_{i \in I} GL(V_i) \curvearrowright M(Q, V, W)$ by conjugation.
- Moment map $\mu: M(Q, V, W) \to \mathfrak{gl}(V)^*$
- Nakajima quiver varieties $\mathfrak{M}_{\theta}(Q,V,W) := \mu^{-1}(0)^{\theta-ss}/\mathit{GL}(V) \text{ smooth } \mathfrak{M}_{0}(Q,V,W) := \mu^{-1}(0) \, /\!\!/ \, \mathit{GL}(V) \text{ affine singular }$
- Depends only on dimensions $\mathbf{v} = \dim V$, $\mathbf{w} = \dim W$, so denote by $\mathfrak{M}_{\theta}(Q, \mathbf{v}, \mathbf{w}), \mathfrak{M}_{0}(Q, \mathbf{v}, \mathbf{w})$
- There is a symplectic resolution $\pi: \mathfrak{M}_{\theta}(Q, \mathbf{v}, \mathbf{w}) \twoheadrightarrow \mathfrak{M}_{1}(Q, \mathbf{v}, \mathbf{w}) \subset \mathfrak{M}_{0}(Q, \mathbf{v}, \mathbf{w})$
- Nakajima defines a conical weight-1 \mathbb{C}^* -action which makes it into a CSR.

Nakajima actions

Recall the framed repn space of a double quiver $Q^{\#} = (I, H)$ $M(Q, V, W) = \bigoplus_{h \in H} \text{Hom}(V_{s(h)}, V_{t(h)}) \bigoplus_{i \in I} \text{Hom}(V_i, W_i) \bigoplus_{i \in I} \text{Hom}(W_i, V_i)$

■ To construct a quiver variety, one has to pick a split $H = \Omega_0 \sqcup \overline{\Omega_0}$

- That makes $M(Q, V, W) = T^*R(\Omega_0, V, W)$, where $R(\Omega_0, V, W) = \bigoplus_{h \in \Omega_0} \text{Hom}(V_{s(h)}, V_{t(h)}) \oplus \text{Hom}(W_i, V_i)$
- Acting by \mathbb{C}^* on fibres yields a weight-1 \mathbb{C}^* -action on $\mathfrak{M}_{\theta}(Q, \mathbf{v}, \mathbf{w}) \twoheadrightarrow \mathfrak{M}_1(Q, \mathbf{v}, \mathbf{w})$.
- We generalize this by using the other partitions $H = \Omega \sqcup \overline{\Omega}$, and get a family of actions which we call **Nakajima actions**.

Nakajima actions in type A

- By definition 2^{Q_1} , though not all are different.
- Use the description of coordinate ring $\mathbb{C}[\mathfrak{M}_0(\mathbf{v},\mathbf{w})]$ by [Lusztig, Maffei]
- For $\mathbf{v} > 0$, get

$$N(\mathbf{w}) := \prod_{k=1}^{m-1} (s_{k+1} - s_k + 1),$$

where s_k are poisitons where $w_k \neq 0$.

■ for general **dominant v**, get

$$N(\mathbf{v}, \mathbf{w}) := \prod_{i=1}^k N(\mathbf{w}^1) \cdots N(\mathbf{w}^k),$$

where $\mathbf{w} = \mathbf{w}^1 \sqcup \mathbf{w}^2 \cdots \sqcup \mathbf{w}^k$ is divided by the support of \mathbf{v} .

Nakajima actions in type A

 For arbitrary v use the LMN isomorphisms = Nakajima reflection functors,

$$\Phi_{\sigma}:\mathfrak{M}_{ heta}(\mathbf{v},\mathbf{w})
ightarrow\mathfrak{M}_{\sigma\cdot heta}(\sigma*_{\mathbf{w}}\mathbf{v},\mathbf{w})$$

to pass from arbitrary ${\bf v}$ to a dominant vector ${\bf v}'.$

■ By [Bezrukavnikov-Losev] Φ_{σ} intertwines Nakajima actions on both sides.

Theorem (Ž.'19)

Given a quiver variety $\mathfrak{M}_{\theta}(\mathbf{v}, \mathbf{w})$ of type A there is exactly $N(\mathbf{v}', \mathbf{w})$ different Nakajima actions, hence the same number of minimal components in its core $\mathfrak{L}_{\theta}(\mathbf{v}, \mathbf{w})$. Here \mathbf{v}' is the associated dominant vector to \mathbf{v} .

■ Dominant vector \mathbf{v}' , easily computable, hence $N(\mathbf{v}', \mathbf{w})$ as well.

Twisted full actions

- Full quiver weight-2 \mathbb{C}^* -action, acts on the whole $M(Q, V, W) = T^*R(Q_0, V, W)$
- $GL(\mathbf{w}) \curvearrowright \mathfrak{M}(Q, \mathbf{v}, \mathbf{w})$ symplectially by conjugations.
- Twisted full actions := 1-PS $\mathbb{C}^* \leq GL(\mathbf{w})$ combined with the full quiver action.
- Get a family of weight-2 actions, we count the even and conical ones.

Proposition (Ž.'20)

On a quiver variety $\mathfrak{M}_{\theta}(\mathbf{v}, \mathbf{w})$ of type A, Nakajima actions are exactly the square-roots of even and conical twisted full actions.

■ Expect these to give all minimal components, i.e. $GL(\mathbf{w}) = Symp_{\mathbb{C}^*}(\mathfrak{M}(\mathbf{v}, \mathbf{w}))^{\circ}$

Springer theory basics

- An important branch of GRT
- Classical results: Representations of Weyl groups [Springer, Kazhdan-Lusztig], representations of $U(\mathfrak{sl}_N)$ [Ginzburg].
- Central object: Springer resolution

$$T^*\mathcal{B} \ \{(F,e) \mid F \in \mathcal{B}, \ e \in \mathfrak{sl}_n, \ eF_i \subset F_{i-1}\}$$

$$\nu \downarrow \qquad \downarrow$$

$$\mathfrak{sl}_n \supset \mathcal{N} \qquad e$$

- Generalized Springer resolution $T^*\mathcal{B}_p \xrightarrow{\nu_p} \overline{\mathcal{O}_{\tilde{p}^*}}$
- Generalized Springer fibre $\mathcal{B}_p^{\lambda} := \nu_p^{-1}(e_{\lambda})$
- ullet $Irr(\mathcal{B}^{\lambda}_{p})$ parametrized by Standard Young tableaux $\mathbf{Std}^{\lambda}_{p}$
- (Non)smoothness and of components of \mathcal{B}^{λ} is well-known [Pagnon-Ressayre, Barchini-Graham-Zierau, Fresse-Melnikov]
- **Not known:** (Non)smoothness of components of $\mathcal{B}^{\lambda}_{\mu}$

Slodowy varieties

- Given a nilpotent $e \in \mathfrak{sl}_n$ there is an \mathfrak{sl}_2 -triple (e, f, h).
- Slodowy slice $S_e := e + ker(\mathsf{ad} f) \subset \mathfrak{sl}_n$
- lacksquare Slodowy variety $\mathcal{S}_{e,p}:=\mathcal{S}_e\cap\overline{\mathcal{O}}_{p_+^*}$
- Restriction of Springer resolution yields a resolution $\widetilde{\mathcal{S}}_{e,p} := \nu_p^{-1}(\mathcal{S}_{e,p}) \to \mathcal{S}_{e,p}.$
- There is the **Kazhdan** \mathbb{C}^* -action $t \cdot x = t^2 \operatorname{Ad}(t^{-h})x$ on S_e , hence on $S_{e,p}$ and $\widetilde{S}_{e,p}$.
- It makes $\nu_p : \widetilde{\mathcal{S}}_{e,p} \to \mathcal{S}_{e,p}$ into a weight-2 CSR, whose core is \mathcal{B}_p^{λ} .
- lacksquare Thus, its minimal components are smooth components of \mathcal{B}_p^λ .

Twisted Kazhdan actions

- $\nu_p:\widetilde{\mathcal{S}}_{e,p} o \mathcal{S}_{e,p}$ is a weight-2 CSR with Kazhdan \mathbb{C}^* -action.
- $Z_e := C_{GL_n}(e, f, h)$ acts equivariantly on ν_p and symplectically on $\widetilde{S}_{e,p}$.
- Twisted Kazhdan actions := 1-PS $\mathbb{C}^* \leq Z_e$ combined with the Kazhdan action
- Search the even and conical ones, as their square-roots are weight-1 conical.

Theorem (Ž.'20)

Given a nilpotent e, define **w** by $\lambda(e) = 1^{w_1} 2^{w_2} \dots n^{w_n}$. Then

- $Z_e \cong GL(\mathbf{w})$
- There is exactly $N(\mathbf{w})$ different even and conical twisted Kazhdan actions on S_e .
- The same holds for $S_e = S_e \cap \mathcal{N}$ (here p = (1, ..., 1)).
- Thus, there is $N(\mathbf{w})$ minimal components in \mathcal{B}^{λ} .

Towards the Maffei isomorphism

- For general p, some of these $N(\mathbf{w})$ actions on $\nu_p : \widetilde{\mathcal{S}}_{e,p} \to \mathcal{S}_{e,p}$ may overplap.
- Compare with quiver varieties by Maffei isomorphism:

$$egin{aligned} \mathfrak{M}(extsf{v}, extsf{w}) & \stackrel{\widetilde{arphi}}{\longrightarrow} \widetilde{\mathcal{S}}_{e,p} \ \downarrow^{\pi} & \downarrow^{
u_p} \ \mathfrak{M}^1(extsf{v}, extsf{w}) & \stackrel{arphi_1}{\longrightarrow} \mathcal{S}_{e,p} \end{aligned}$$

where
$$\mathbf{w} - C\mathbf{v} = \mu = (p_1 - p_2, \dots, p_n - p_{n+1}).$$

- Expect (work in progress) φ and φ_1 to be equivariant with respect to $\mathbb{C}^* \times GL(\mathbf{w})$ -action, where $GL(\mathbf{w}) \cong Z_e$ explicit.
- That would yield $N(\mathbf{v}', \mathbf{w})$ smooth components in \mathcal{B}_p^{λ} .

Further research - crystal operators

- There are certain crystal operators that interchange between irreducible components of different cores.
- For quiver varieties, founded by [Nakajima, Saito].
- Later, [Savage] translates via Maffei isomorphism to Springer fibres.
- Get maps

$$\widetilde{E_k}: Irr(\mathcal{B}_p^{\lambda}) o Irr(\mathcal{B}_{p^-}^{\lambda})$$

$$\widetilde{F_k}: Irr(\mathcal{B}_p^{\lambda}) \to Irr(\mathcal{B}_{p^+}^{\lambda})$$

where
$$p^{k,\pm} = (p_1, \dots, p_{k-1}, p_k \pm 1, p_{k+1} \mp 1, p_{k+2}, \dots, p_n).$$

• Using these maps and minimal components, one could generate many more smooth components of $\mathcal{B}_{p}^{\lambda}$ (work in progress).

The end

Thank you for listening.