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A first example π : T ∗CP1 → C2/(Z/2)

π : T ∗CP1,→ C2/(Z/2) blow up

(−1) y (z1, z2) = (−z1,−z2)

t · (z1, z2) = (tz1, tz2) contracts C2/(Z/2) to a point.

Action lifts to T ∗CP1, s.t. t · ωC = tωC
π−1(0) = CP1 Lagrangian

The R−picture



Conical symplectic resolution

A conical symplectic resolution (CSR) of weight k ∈ N is

A projective C∗-equivariant resolution,

C∗
ϕ
y M

π ↓

C∗
ϕ
y M0

M0 normal affine holoc Poisson variety whose C∗-action
contracts to a single fixed point:

∀x ∈M0, lim
t→0

t · x = x0,

Such actions we call conical.

(M, ωC) holoc symplectic, t · ωC = tkωC.



Examples of conical symplectic resolutions

Resolutions of Du Val singularities

Hilbert schemes of points on them

Nakajima quiver varieties

Springer resolutions, resolutions of Slodowy varieties

Hypertoric varieties

Slices in affine Grassmanians

Higgs/Coulomb branches of moduli spaces
(3d Gauge theories with N = 4 supersymmetry)

All examples are complete hyperkähler manifolds.
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Real sympectic structure on CSRs

Def: An exact real symplectic manifold (M, ω = dθ) is a
Liouville manifold when

(M \ K , θ) ∼= (Σ× [1,+∞),Rα)

where α is a positive contact form on Σ.

Any CSR (M, ϕ) is canonically a Liouville manifold
(M, ωJ,K ), where ωC = ωJ + iωK and
ωJ,K = any linear combo of ωJ , ωK .

Hence, the compact F(M) and the wrapped W(M) Fukaya
categories are well-defined.

We are interested in closed exact Lagrangian submanifolds
of (M, ωJ,K ) (L ⊂M exact means θ|L is exact)



Exact Lagrangians in CSRs

When CSR π : M→M0 is of weight 1, its core L = π−1(0)
is a complex Lagrangian subvariety.

Otherwise not, e.g. Hilbn(C2)→ Symn(C2)

L = ∪α∈ALα
If Lα smooth, Lα is exact.

All Lα are non-isotopic.

Theorem (Ž.’19)

Any weight-1 CSR M has at least N ≥ 1 smooth core components,
hence non-isotopic exact Lagrangians. Here N is the number of
different (commuting) conical weight-1 C∗-actions on M.

We call the these minimal components of the core.

Example: Du Val resolutions of type A: C̃2/Z/n→ C2/Z/n
The core is An−1 tree of spheres and they are all minimal.



Floer theory of minimal components

Fukaya category F(M)

objects: closed exact Lagrangian submanifolds

morphisms: Mor(L1, L2) = CF ∗(L1, L2)
cohomologically: HF ∗(L1, L2)

Proposition

1 Given a weight-1 CSR M, its minimal components are exact
Lagrangians, hence HF ∗(Lmin,Lmin) ∼= H∗(Lmin) for each minimal
Lmin.

2 For each pair L1
min,L

2
min of minimal components we have

HF ∗(L1
min,L

2
min) ∼= H∗(L1

min ∩ L2
min).

3 Given a triple L1
min,L

2
min,L

3
min of minimal components, The Floer

product

HF ∗(L2
min,L

3
min)⊗ HF ∗(L1

min,L
2
min)→ HF ∗(L1

min,L
3
min)

is isomorphic to the convolution product.
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Representations of a double quiver

Graph Q = (I ,E )  double quiver Q# = (I ,H := E t Ē )

Double quiver of A4

The space of Framed representations of double quiver

M(Q,V ,W ) = ⊕h∈HHom(Vs(h),Vt(h))⊕i∈IHom(Vi ,Wi )⊕i∈IHom(Wi ,Vi )

GL(V ) =
∏

i∈I GL(Vi ) y M(Q,V ,W ) by conjugation.



Quiver varieties

GL(V ) =
∏

i∈I GL(Vi ) y M(Q,V ,W ) by conjugation.

Moment map µ : M(Q,V ,W )→ gl(V )∗

Nakajima quiver varieties
Mθ(Q,V ,W ) := µ−1(0)θ−ss/GL(V ) smooth
M0(Q,V ,W ) := µ−1(0) � GL(V ) affine singular

Depends only on dimensions v = dimV ,w = dimW , so
denote by Mθ(Q, v,w),M0(Q, v,w)

There is a symplectic resolution
π : Mθ(Q, v,w)�M1(Q, v,w) ⊂M0(Q, v,w)

Nakajima defines a conical weight-1 C∗-action which makes it
into a CSR.



Nakajima actions

Recall the framed repn space of a double quiver Q# = (I ,H)

M(Q,V ,W ) = ⊕h∈HHom(Vs(h),Vt(h))⊕i∈IHom(Vi ,Wi )⊕i∈IHom(Wi ,Vi )

To construct a quiver variety, one has to pick a split
H = Ω0 t Ω0

That makes M(Q,V ,W ) = T ∗R(Ω0,V ,W ), where
R(Ω0,V ,W ) = ⊕h∈Ω0Hom(Vs(h),Vt(h))⊕ Hom(Wi ,Vi )

Acting by C∗ on fibres yields a weight-1 C∗-action on
Mθ(Q, v,w)�M1(Q, v,w).

We generalize this by using the other partitions H = Ω t Ω,
and get a family of actions which we call Nakajima actions.



Nakajima actions in type A

By definition 2Q1 , though not all are different.

Use the description of coordinate ring C[M0(v,w)] by
[Lusztig, Maffei]

For v > 0, get

N(w) :=
m−1∏
k=1

(sk+1 − sk + 1),

where sk are poisitons where wk 6= 0.

for general dominant v, get

N(v,w) :=
k∏

i=1

N(w1) · · ·N(wk),

where w = w1 tw2 · · · twk is divided by the support of v.



Nakajima actions in type A

For arbitrary v use the LMN isomorphisms = Nakajima
reflection functors,

Φσ : Mθ(v,w)→Mσ·θ(σ ∗w v,w)

to pass from arbitrary v to a dominant vector v′.

By [Bezrukavnikov-Losev] Φσ intertwines Nakajima actions on
both sides.

Theorem (Ž.’19)

Given a quiver variety Mθ(v,w) of type A there is exactly N(v′,w)
different Nakajima actions, hence the same number of minimal
components in its core Lθ(v,w). Here v′ is the associated
dominant vector to v.

Dominant vector v′, easily computable, hence N(v′,w) as well.



Twisted full actions

Full quiver weight-2 C∗-action, acts on the whole
M(Q,V ,W ) = T ∗R(Q0,V ,W )

GL(w) y M(Q, v,w) symplectially by conjugations.

Twisted full actions := 1-PS C∗ ≤ GL(w) combined with
the full quiver action.

Get a family of weight-2 actions, we count the even and
conical ones.

Proposition (Ž.’20)

On a quiver variety Mθ(v,w) of type A, Nakajima actions are
exactly the square-roots of even and conical twisted full actions.

Expect these to give all minimal components, i.e.
GL(w) = SympC∗(M(v,w))◦
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Springer theory basics

An important branch of GRT
Classical results: Representations of Weyl groups [Springer,
Kazhdan-Lusztig], representations of U(slN) [Ginzburg].
Central object: Springer resolution

T ∗B {(F , e) | F ∈ B, e ∈ sln, eFi ⊂ Fi−1}
ν ↓ ↓

sln ⊃ N e

Generalized Springer resolution T ∗Bp
νp−→ Op̃∗

Generalized Springer fibre Bλp := ν−1
p (eλ)

Irr(Bλp ) parametrized by Standard Young tableaux Stdλp
(Non)smoothness and of components of Bλ is well-known
[Pagnon-Ressayre, Barchini-Graham-Zierau, Fresse-Melnikov]
Not known: (Non)smoothness of components of Bλµ



Slodowy varieties

Given a nilpotent e ∈ sln there is an sl2-triple (e, f , h).

Slodowy slice Se := e + ker(adf ) ⊂ sln

Slodowy variety Se,p := Se ∩ Op∗+

Restriction of Springer resolution yields a resolution
S̃e,p := ν−1

p (Se,p)→ Se,p.
There is the Kazhdan C∗-action t · x = t2Ad(t−h)x
on Se , hence on Se,p and S̃e,p.
It makes νp : S̃e,p → Se,p into a weight-2 CSR, whose core is
Bλp .
Thus, its minimal components are smooth components of Bλp .



Twisted Kazhdan actions

νp : S̃e,p → Se,p is a weight-2 CSR with Kazhdan C∗-action.

Ze := CGLn(e, f , h) acts equivariantly on νp and symplectically

on S̃e,p.
Twisted Kazhdan actions := 1-PS C∗ ≤ Ze combined with
the Kazhdan action

Search the even and conical ones, as their square-roots are
weight-1 conical.

Theorem (Ž.’20)

Given a nilpotent e, define w by λ(e) = 1w12w2 . . . nwn . Then

Ze
∼= GL(w)

There is exactly N(w) different even and conical twisted Kazhdan
actions on Se .
The same holds for Se = Se ∩N (here p = (1, . . . , 1)).
Thus, there is N(w) minimal components in Bλ.



Towards the Maffei isomorphism

For general p, some of these N(w) actions on
νp : S̃e,p → Se,p may overplap.

Compare with quiver varieties by Maffei isomorphism:

M(v,w) S̃e,p

M1(v,w) Se,p

ϕ̃

π νp

ϕ1

where w − Cv = µ = (p1 − p2, . . . , pn − pn+1).

Expect (work in progress) ϕ and ϕ1 to be equivariant with
respect to C∗ × GL(w)-action, where GL(w) ∼= Ze explicit.

That would yield N(v′,w) smooth components in Bλp .



Further research - crystal operators

There are certain crystal operators that interchange between
irreducible components of diferent cores.

For quiver varieties, founded by [Nakajima, Saito].

Later, [Savage] translates via Maffei isomorphism to Springer
fibres.

Get maps
Ẽk : Irr(Bλp )→ Irr(Bλp−)

F̃k : Irr(Bλp )→ Irr(Bλp+)

where pk,± = (p1, . . . , pk−1, pk ± 1, pk+1 ∓ 1, pk+2, . . . , pn).

Using these maps and minimal components, one could
generate many more smooth components of Bλp (work in
progress).



The end

Thank you for listening.
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