LECTURE NOTES BY FELIX OTTO FOR THE PIMS
SUMMER SCHOOL ON OPTIMAL TRANSPORT

Version of July 18th 2022.

These notes are based on the paper “Quantitative linearization results
for the Monge-Ampere equation” with M. Goldman and M. Huesmann,
in particular Section 3 therein. Compared to this paper, the notes
come with more motivations, less PDE machinery, and a couple of
simplifications. They should allow for an independent reading.

In the next weeks, Lukas Koch and I plan to sketch the remaining part
of the proof, so that it is logically complete, and post the notes. 1
thank Francesco Mattesini and Christian Wagner for a careful reading.
If you have questions, find typos — or more serious issues — please let
me/us know.

1. CONNECTION OF OPTIMAL TRANSPORTATION AND THE
NEUMANN PROBLEM FOR THE POISSON EQUATION

In this section, we motivate the connection between optimal transporta-
tion (OT) and the Neumann boundary value problem for the Poisson
equation.

1.1. Trajectories. For the above connection, it is convenient to adopt
a dynamical view upon OT, identifying a pair (x, y) of (matched) points
with the (straight) trajectory

(1) 0,1] 5t X(t) =ty + (1 —t)x.

Given an optimal transfer plan 7 for A, i, we ask the question on how
to choose a function ¢ in such a way that its gradient V¢ captures the
velocity of the trajectories, meaning

(2) X(t) = V(X (t)) for (z,y) € suppr.
As we shall see, the answer relates to the Poisson equation —A¢ =
= A

We are interested in connecting to a boundary value problem for the
Poisson equation on some domain, say a ball Bg of some radius R (to
be optimized later) and center w. 1. 0. g. given by the origin. We are
thus led to restrict ourselves to the set of trajectories that spend some
time in the closure Bp:

(3) Q:={(z,y)| 3t €0,1] X(t) € B }.
1
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To every (z,y) € ), we associate the entering and exiting times 0 <
o < 1 <1 of the corresponding trajectory

ogs] (4) o :=min{t € [0,1]| X(¢) € Br},
7:=max{t € [0,1]| X (¢t) € Bg}.
(Note that some trajectories may both enter and exit.) Given a transfer
plan 7, we keep track of where the trajectories enter and exit Br, which

is captured by two (non-negative) measures f and ¢ concentrated on
0Bpg, defined through

(5) Jer=] ((X(0))dr,
QN{X(0)€dBR}

(6) [eas=[ (X (r))dr
QN{X(r)cdBr}

for all continuous and compactly supported functions (. Note that the
set of trajectories Q N {X (o) € 0Br} = {3t € [0,1] X(t) € 0Bg}
implicitly defines a Borel meas irable subset of R? x R%, namely the
pre-image under the mapping (), which is continuous from R? x R¢
into C°([0, 1]). Hence it is legitimate to integrate against 7 as in >(15_)7

Lemma 1. We have for any admissible m and any continuously differ-
entiable function ¢ on Br

/Q /J X (t) = Vo(X(1))[*dtdn

:/Q/a ]X(t)\2dtd7r+/9/;|V¢(X(t))|2dtd7r

(7) =2/ ddp—X2) -2 ¢dlg-f)

Br dBR

For later purpose, we record

(8) AMBg) + f(0Bgr) = u(Br) + g(0BRr).

PRrROOF OF LEMMA %ﬁ%denﬁty (%5)07\87\76 note that for the mixed
term we have by the chain rule X (¢) - Vo(X(t)) = Llp(X(t))] and
thus by the fundamental theorem of calcul asOJ@T X(t) - Vo(X(t))dt =
d(X (1)) —¢(X(0)). In view of definition E‘&L’)*we either have X (o) €
O0Bpg, or we have X (o) € Bg and thus ¢ = 0 and X (o) = «, so that
we may ignore (x,y) € € in this latter case. Hence [, ¢(X£g‘&)d7‘(
= Jonix(oycony @X(@))dr + [i, 5y @(x)dr. By definition (%)Tche
first integral is [ ¢df. By admissibility of m, the second integral is
fBR ¢d). Likewise, one obtains [, ¢(X (7))dr = [ ¢dg + fBR odp.

we learn rom the above two identities.

Specifyin L9 p =1, and thus V¢ = 0 so that the mixed term vanishes,
(%) f
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1.2. Perturbative regime. We will focus on a “perturbative regime”,
which comes in form of two local smallness conditions. Smallness con-
ditions have to be formulated in a non-dimensionalized way, which we
implement by expressing this local smallness condition on a ball of
non-dimensionalized radius, which for convenience is taken to be 3.

The first smallness condition involves the data (thus the letter D), that
is, the two measures A and p. We monitor how close these measures are
to the Lebesgue measure on Bs. It is natural to quantify this in terms
of the Wasserstein distance. Since the mass A(Bs) in general is not
equal to the Lebesgue volume |Bs|, we have to split this into two: We
monitor how Wasserstein-close the restriction ALBj3 is to the uniform
measure kydrLBsz, where k) := /\I(Bij)’ and we monitor how close this
density k) is to unity. It is convenient to do both on the squared level:

D : = W?(ALBs, kadzLBs) + (ky — 1)?
9) + same expression with A ~» .

The second smallness condition involves the solution itself, i. e. 7. It
monitors the length of trajectories that start or end in Bs. It does so
in a square-averaged sense, like the total cost function itself. In fact,
it is a localization of the cost functional (or energy, thus the letter E):

(10) i [ 2 — yfdr.
(Bg XRd)U(RdXBg,)

We expect (and shall rigorously argue later) that in the perturbative
regime F + D F%O]B and provided R € [1,2] we have for the second

r. h. s. term in (

(11) || vecxoypian ~ [ R

Indeed, for E < 1, trajectories do not move much so that

’ X () Pdtdr ~ 2dr = 2d)\
/Q / V(X (1)) Pdtdr /{%BR}IW(@\ r / (o

where the last identity follows from admissibility. Furthermore, for
D < 1, X is close to Lebesgue so that

/ VoPdr ~ / V.
Br Br
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1.3. Connection to the Neuman 1é15problem orbghe g)'gson equa-
tion. Hence in order to achieve ( in view of (7) and (IIT), we are led
to minimize

a2 [ vep-2 [ sau-n-2[ g1
Bgr Br OBRr
aoll
in ¢. A minimizer ¢ of (12), if it exists as a continuously differentiable
function on Bg, would be characterized by the Euler-Lagrange equation

1) [ vevo- [ cp-n- [ cilg-p=o
Bgr Br OBRr

for all continuously differentiable test functions ¢ on Bgr. If ¢ even
exists as a twice continuously differentiable function on Bp, we could
appeal to the calculus identity V(- Vo = V - ((V¢) — (A¢ and the
divergence theorem in form of fBR V- (Vo) = fBBR (v - V¢, where
v(x) = § denotes the outer normal to dBp in a point x, to obtain the
integration by parts formula

(14) /B ve-vo- [ (o0)+ [ Ve

9Br

Hence (ﬁ'%ﬁ);gcan be reformulated and regrouped as
(15) ((=A¢ —d(p—A) + Cw-Vo—dlg-[)) =
Br

dBr
Consi ering first all test functions (’s that vanish on 0Bpg, we learn
from (I5) that —A¢ = p— A distribu%%?lly in Bgr. Since p — A is
a bounded measure, the first term in (I5) thus vanishes also for tﬁ%%é
functions that do not vanish on dBg. Hence the second term in (
vanishes individually, which means v - V¢ = g — f distributionally on
0Bpgr. Hence we end up with what is called the Poisson equation with
Neumann boundary conditions

(16) —ANp=pu—Ain Bg, v-V¢=g— fondBp.

This is a classical elliptic boundary value problem, which for sufficiently
regular p — & and g — f has a unique twice differentiable solution,

provided (85 Tolds, and

(17) 6=0
Br

is imposed. This motivates the connection between optimal transporta-

tion and the (short) Neumann-Poisson problem.

However, for rough (like sum of Diracs) %sures )\ , 4, and thus also
rough measures f, g, the solution ¢ of HE‘;’ eve At exists for this
linear problem, will be rough, too. In particular, ( may not be true;
even worse, both the 1. h. s. and the r. h. s. might be infinite. Hence we
shall approximate both y — A and g — f by smooth functions (in fact,
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we shall approximate p — A by a congfant function). The best way to
organize the output of Lemma [T 1s given by

Corollary 1. We have for any admissible = and any twice continu-
ously differentiable function ¢ on Bg

/Q /U X (t) — Vo(X(t))[*dtdn

s/|a:—y|2d7r—/ VP
Q Br

12 i H(—Ad —d(p— N)) + 2 . P(v-Voé—d(g— f))

as) o+ [ [ Ve pas - | R

As we already argued, see (ﬁ%’?we expect the term in last line (ﬁ'%%to be
negligible. The integrals in%};@second r. h. s. line can be made small
by approximately solving ( — so that there is a trade-off between
making the last line and the second line small. However, the main
open task is to argue, based on the optimality of 7, that th%?rm in
the first r. h. s. line is small for an approximate solution of (

cor:orth 2008
P;}o{%EOOF OF COROLLARY [I. The upgrade of identity (I7) to inequality

( relies on

ao TX 2dtd — y|?d
[acg6] (19) /Q/Gr<t>\t7rs/grx yPdr.
(20) /B Vol = [ ol-n0)+ [ ov-o

OBR
46 . .
Inequalit ao(ﬁé’)’follows from. TIX(#)]2dt < fol | X (t)2dt = |z — y|*
Identity (YZUF follows from ( or ( = ¢.

cor:orth
1.4. Localizing optimality. Asmentioned after aCo gollary h,_t‘he_main
open task is to estimate the first r. h. s. line of (h’B’?’ For this, we will
(for the first time) use that 7 is optimal. In order to connect to the
Neumann-Poisson problem on Bp, we need to leverage optimality in a
localized way. Of course, it will in general not be true that the cost of
7 localized to (Bgr x R?) U (R? x Bp) is estimated by the transportation
cost between the localized measures A\ Br and . Br. However, this is

a;%b%st true if one adds the dw’ggsi&%ggion of the entering points f, see

, and exiting points g, see (6), respectively:
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Lemma 2. For m optimal we have

(/Q & — y[2dr)?

(21) gW(/\LBR+f,uLBR+g)+(2/ |x—y|2d7r)%.

{3t€[0,1] X (t)eOBR}

lem:opt . . .
Lemma b controls the transportation cost coming from those trajec-
tor that spend some time 1r117BR, which amounts to the 1. h. s. of
( according to definition k?) by an OT problem localized to By as
described by the first r. h. s. term. It does so up to the transportation
cost coming from those (fewer) trajectories that cross (or touch) the
boundary 0Bpg, see the second r. h. s. term. Eventually, one has to
argue that this last term is negligible for a good choice of R.

. 2070 . : i
As its form suggests, (E'I%_has the structure of a triangle inequality. In
fact, its proof has similarities with the proof of the triangle inequality
for W, using a disintegration (or conditioning) argument.

lem:opt
PRrROOF OF LEMMA Wnow introduce the distribution of z = X (0)
under 7 conditioned on the event that the trajectory X enters at
z € OBpg. In less probabilistic and more measure-theoretic terms ( “dis-
integration”), we introduce the (weakly continuous) family of proba-
bility measures {\;}.cap, such that

@ | v S X @)r(dady) = | [ e,

L. . 2009 d d
which is possible by (% ). Here, ( is an arbitrary test function on R* x R¢.
Likewise, we introduce the probablhty distribution {fuy }weon, of the
end points of trajectories that exit in w:

@ | o S o)) = | [ ctwmtdn o),

Let 7 denote an optimal plan for W (ALBg + f, uBr + g). Equipped
with these objects, we now define a competitor 7 for m that mixes 7
with 7, in the sense that it takes the trajectories from 7 that stay
outside of B, the trajectories from 7 that stay inside (the open) Bg,
and concatenates trajectories X from 7 that enter or exit By with
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trajectories of 7 that start or end in 0Bg:

/ ¢, y)(dady) = [ C(x,y)m(dudy)

Qc

+/BRXBR C(z, y)7(dxdy)
+/aBRXBR/C(m,y))\z(dx)ﬁ(dZdy)

/BRxaBR/C T,y pas (dy) 7 (dxclw)
. +/aBRXaBR / / (@, y) o (dy) Az (da) 7 (dzdw).

It is straightforward to §o Jhat 7 has marginals A and p; let us

check the first by using (24) for a functlon ¢ = ((x): Since p,, is a
probability measure to the effect ) (dy) = ((x), the second
and the forth r. h. s. term of ( combme to fB Jra C(2)7 (dzdy).

Here, we used that 7 is supported on B X BR Likewise, the third
and the fifth term combine to faB e J C(@)A.(d )’(dzdy) By ad-
mlss1b1hty of 7, the combination of the seco L and forth term gives
Il Br Wthh as in the proof of Lemmajl_ﬁw_admls&blhty of 7r)
can be seen to agree with [ v cpy C(@)m(dzdy). Since [ ((z)A.(dx)
does not depend on y, for the same reason, the combination 0%1:))8‘53
third and fifth term renders | opy, 6(2)f(dz), which by definition (5)1s
equal to fQﬂ{X (0)€0Bx) ((x)m(dzdy). Hence tlgese four terms combine
to fQ m(dzdy). Therefore, the r. h. s. of( collapses as desired to
[(z dxdy ), which coincides with [ ((z)A(dz) by admissibility of .

By optimality of 7, we have [ |z —y|*dr < [ [z — y[*dF; rewriting this
as [o |z —yPPdr + [, |t — y|*dr < [ |z — y|*d7, and using ( for
((5,9) = |z — yP’, we gather

(25) ( / & — y2dm)E < [|(for fo fur £5)]]

where the four functions f,---, f5 > 0 are defined by

ley) = e —yl, f2(zw) = / / &y (dy) s (d),
Pay) = / e —yPA(dr),  fA(xw) = / & — 5 (dy),
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and the norm || - || is defined through
|‘(f27f37f47f5)”2

- /B ) f2 (2, y)7(dedy) + / 3 (2, )7 (dzdy)

8BR><BR
(26) +/ ff(l’,w)ﬁ(dmdw)—l—/ f2(z,w)7(dzdw).
Brx90Br OBRrx0Bpg

By the triangle inequality w. r. t. L*(\,) and L*(p.,), and using that
A2, [y are probability measures, we obtain

27) fi<lz—yl+fs, fi<lz—w|+fi, f5<|z—w[+V2fs,
where the three functions fs, fu, f5 > 0 are defined by

@) Bew)i= [lo—sPatdn), Blow)i= [ o=y,
(29) fg(zaw) = f32(27y> + ff(w,w)

2 ~ ~ ~
The factor of v/2 in (B% arises because of f5 + f1 < V2fs.
2
From (}‘Zaoﬁ we obtain by the écfiangle inequality for || - ||
ao

1 (B5)
([ o= vPim)* < o o fi o)
(30) < (e =yl |z =yl |z —wl, |z = w)] + V2[[(0, fs, fa, f5)]],
~ o~ . ao(5
where we gave up a facigg%gf V2 on fs, f1. By definition (}‘265 of || -,

the first r. h. s. term in (30} coincides with the square root of [ BpxBp |%
—y|*7, which by optimality of 7 is W(ALBr+ f, u.Br+g), as desired.

5 8 7 6
By definitions (ba%;, (BOSE, and (BOQE, the second r. h. s. term in (Eo(I;

is equal to 2 times [yp  po [ |2 —2[PA(d20)7(dzdy) + [payop, J 1w —

y|* 1y (dy) 7 (dzdw). By admissibility of 7, this sum is equal to [, %@ (9 |z—

zﬁ)\é(d@f(('iz)‘ +f85ij lw — y|*u, (dy)g(dw). ]3y definitions (22) and
(23), this coincides with fQﬁ{X(U)EBBR} |lz—X (0)|*dr + fQﬂ{X(T)EaBR} | X (1)—

y|*dr. Since on the intersection 2 N{X(c) € dBr} N{X(7) € 0Br}

we have |z — X (o) + | X (1) — y|* < |x — y|?, this sum is estimated by
QN({X (0)€dBR}U{ X (r)€OBR}) |z — y|?dn. Note that this set of integration

coincides with {3t € [0,1] X (t) € 0Bg}, as desired.

L.5. Constructing a competitor based on the Neumann-Poisson
problem. As mentioned after C a0 ]éary , the remaining task is to e T om: ont
timate the first r. h. s. line of (I8). For this, we will use Lemma %

and construct a competitor for W(ALBg + f, B+ g) based on ¢,

the solution of the Neumann-Poisson problem (II6), where we think of

the measures A, u as having continuous densities with respect to the
Lebesgue measure.
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Lemma 3.

1

20| (31) W*(\B B < V|2
lem: 2
Lemma %enrlnzioklgs a second dilemm 1a}rent The intention was to

use it in conjungtjon with Lemma o obtain an estimate on the ﬁrst
r. h.s. linein ]?I'SS)L This however would require that ming, A\, ming, p £
1, so a (one-sided) closeness of i and A to the Lebesgue measure in a
strong topolggéfs as opposed to the closeness in a weak topology as ex-
pressed by (b‘)._Hence this provides another reason for approximating
A and p by more regular versions.

lem:comp2
PROOF LEMMA &3. ['he proof is short if one uses the Benamou-Brenier
formulation in its distributional version, as we shall do. For every
t € [0,1] we introduce the (singular non-negative) measure

(32) p=1t(uBr +g) + (1 = t)(ALBr + f)

and the (t-independent) vector-valued measure

(33) ji = VodrBg.
2 2
We note that (al G in its distributional form of (al 03; can be re-expressed
as

d )
(34) & [ edo= [ v¢-di

for all test functions (. In the jargon of the Benamou-Brenier for-
mulation, which is inspirjéiqééom continuum mechanics, p; is a (mass)
density, j; is a flux, and (34) is the distributional version of the conti-
nuity equation 0,p; + V - j; = 0, expressing conservation of mass.

Following Benamou-Brenier one takes the Radon-Nikodym derivative
% of the (vectorial) measure j; w. r. t. p; (it plays the role of an

Eulerian velocity field), and considers the expression that corresponds
to the total kinetic energy:

1 [|dj|? , 1
(33) 5/]i o, ::sup{/s-dyt—/;s!?dpt}e[o,ooJ,

dp

where the supremum is taken over all continuous vector fields £ with
compact support. Benamou-Brenier gives

1
d
a087] (36) W2(pg, pr) < / / 'ﬁ
0 t

2

. . .. . 2g85 |
Since in owr case, j; is supported in (the open) Bg, see (&33; in the
r. h. s. of (35) we may restr &)urselves to & supported in Bg. In this
case we have by definition ( that [&-dj, — [ 1[¢]*dp = fBR (&-Vo

— 1€t + (1 — t)A)). Since we have that p, A > 0 a. e. , by Young’s
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inequality in form of £ - V¢ < %(Z/é + (1 —t)N)|E> + W|V¢’2
we thus obtain for the r. h. s. of (
BR tpu+ (I —¢)A — min{ming, A\, ming, u} /5,

7
inge by definition (}32 ;, the L. h. s. of (%%%coincides with the L. h. s. of

, we are done.

2. HARMONIC APPROXIMATION

The purpose of this section is to establish that the displacement in an
optimal plan 7 can locally be approximated by a harmonic gradient
V¢ (by which we mean that for each Cartesian direction ¢ = 1,--- ,d,
the component 0;¢ is harmonic, as a consequence of —A¢ = const).
;Fsl%ise%l,g)lds provided we are in the perturbative regime, see Subsection
h_.ﬁhere E and D are defined. More precisely, given any fraction
0 < # < 1, there exists a 218 %shold € > 0 for E+ D so that below that
threshold, the 1. h. s. of (b’?%’ls only a fraction 6 of E, plus a possibly
large multiple of D.

Proposition 1. For every 6 > 0, there exist €(d,0) > 0 and C(d,0) <
oo such that the following holds. Let m be optimal for \, u; provided
E+ D <, there exists a harmonic V¢ on By such that

o (y —2) — Vo(a)|2dr < 9E +CD,
(Bl XRd) (RdXB1)
(39) Vo[ < C(E+ D).

By

(The proof actually reveals an explicit dependence of ¢ and C' on 6.)
We will obtain V¢ by solving the Neumann-Poisson problem

(39) —Ap = “|(§P|‘) - A‘fﬁ) in B and v-V¢=g— fondBg,
R R

where f, g are suitable regular approximations of f, g, and where th(fem-com 5
radius R € [1,2] is well-chosen. Hence by an application of Lemma

to this setting, we have

2 AMBr) ;. (B )
(40) < / Vol
min{* |Br g \BR| 2

Working with Creates Jthe agdltlonal tagk 8f estimating the first
r. h. s. term (21] of Lernma e l. h. s. of (A0), which is conveniently
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done with help of the triangle inequality:

B _ (B
W(ALBR + f.u B + g) < W( ( R)deBR + F i R)deBR +3)

B
+ W(ALBRg, |(B—R‘)d$|_BR) + same term with A ~
R

(41) + W (f, f) + same term with f ~ g.

0 0 1
Combining (baol ;, (Ea[%gfand (haol i we see that the first r. h. s. line [, [z —
y|*dr — [, [V¢[* in Corollary I['is Tess than or equal to

1
(12 (1-— ) [ Ve
min{ )“fj), “‘gj)} Br
plus the square of
1
2/ |z — y[?dr)?
{3te]0,1] X(t)€OBR}
A(Br) .
+ W(ALBg, del_BR) + same term with A ~
R

(43) + W(f, f) + same term with f ~» g.

We expect (and can show for a good radius RO% [1,2]) that in the

regime D < 1, the prefactor on the r. h. s. of (a 1s < +/D, and that
the second line in (43)is < D, as consistent with (&37 ;

The main remaining work is to identify a good radius R € [1,2] and to
construct f and g. Again, there is a trade-off /conflict of interest:

e Quhe one hand, g — f has to be sufficiently regular s%%t%?t via
(B9), ¢ is sufficiently regular. In particular, we need ( e(t with
By replaced by the larger B R%%(;)% obtain that the error (h%;lsé rox
o(E+ D). This is ensured by (46) in the upcoming Lemma . Tn
fact, it even yields uniform integrability of ]g} 2 on Bp, which
is crucial to show that also the last line in (I8)is o(FE + D).

e On the other hand, (f,g) has to be suffi deptly close to (f,g).

In particular, in view of the last term in (43} we nee%_?géz( i)
+W3(g,9) = O(EWIétn:Q!Drg'x This is ensured by (46) in the
upcoming Lemma #. Here, we have to rely on M < 1 in our
regime F 4+ D < 1, which is a consequence of the monotonicity
of suppm by an argument not (yet) contained in these notes.
M < 1a\(7)v'g also be needed to show that the previous to last
line in (h’S%_ls o(E) + O(D) for a good R.
In the upcoming approximation lemma we restrict to g for brevity.

Lemma 4. Consider the maximal length of trajectories that spend some

time in By
(44) M :=sup{ |z — y| | () € suppr N {3t € [0,1] | X (¢) € Ba} }.
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Provided M < 1, for every R € [1,2] exists a function gr on OBr such
that

(45) / W2(gn, ) dR < 8M(E + D),
(46) / | dhdr <3t + D)
aBR

Note that we put an inde on g because the definiti bn (%ao) OC?Bb\iffously
a0 a0

depends on R. Adding (45), divided by M, and ( we learn that

there exists R € [1,2] such that - 1W? (gR,gR +f8B gR (8 + 3%%,,)

(E+ D). We use the same addition argument to show that we can find

a common R that suits both f and g.

PROOF OF LEMMA El?_mﬁ an R € [1,2] and start with the con-
struction of gr, momentarily returning to our short-hand notation g.
Let 7 be optimal for W?(u. Bs, r,dz.Bs); note that 7 is supported on
Bs x Bs. We extend it (trivially) by the identity to R x R?; the exten-
sion (which we still call) 7 is admissible for W?(u, k,dzBs + puBS).
We retain

(a)088
(47) /\y — z|?d7 = W?(uLBs, k,dz_Bs) < D.

Like in the proof of the triangle inequality for the Wasserstein metric,
we disintegrate 7 according to

(48) /Cy, 7 (dz|y)p(dy) = /C% 7 (dydz),

since this family of (conditional) probability measures {7 (-|y)},cra al-
lows us to define the measure @ on R? x R% x R? via

/( x,y, 2)7(dxdydz) = //C x,y, 2)7(dz|y)m(dxdy),

which has desired property

(49) marginal of 7 w. 1. t. (z,y) i ,

marginal of 7 w. r. t. (y, 2) .

. . . . . [a000
We still associate the trajectory X to a pair (x y) as in (). We ex-
tend this definition by associating to B)let x,y, z) the continuous
piecewise affine trajectory defined by ( l i followed by

Xt)y=(@t—-1)z+(2—-t)y fortell,?2.

We now are interested in the distribution  of the endpoint z = X(2)
of those trajectories that exit Br during the first time interval [0, 1],
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i. e. those trajectories X € Q with X(7) € 0Bg. This distribution is
defined by

(50) / Cdk = /Q I }g(z)ﬁ(dxdydz).

Starting from the triangle inequality in form of |y[ < |y = X (7)[+ R < |z
—y| +R, we see that our assumption M < 1, cf. (&[9%7 in conjunction
with R %@eads toy = X(1) € B; for (z,y) € suppm. By the first
i%%%in (49), this extends to (z,y, z) € suppm. By the second item in
(19), this yields z = X (2) € Bs by 7(B;3 x BS) = 0 according to our

extension of 7. Hence we have

(51) K is supported in Bj.

9
Therefore by the second item in (&Iaogi and the admissibility of 7 for
W2(u, k,dzBs +puCBS), we obtain

/Cd/@ < / ((z)7(dydz) =k, | ¢ provided ¢ > 0.
{z€Bs3} Bs

Hence k has a Lebesgue density, we still denote by &, that satisfies

(52) k < Kk, Lebesgue almost surely.
Finally, we radially project x onto 0Bg:

_ z

(53) [ ca= [ crZomtaz).

This concludes the construction of g, we now turn to its estimate.

2097
We start with (hS; and note that an admissible plan for W?(g, g) is
given by
/ (X (), B )i

QN{X(r)€dBRr} ]

Indeed, on the one hand, for ¢ only depending on the ﬁﬁggigariable,

7 may be replaced by 7 accordin O%btil%e first item in ( so that
we obtain [ (dg by its definition (%)_Uﬁ the other hand, for ¢ o g |
depending on the second variable, we obtain [ ¢dg by combining (gtgf
and (b3). Hence we have

(54) Wig.9) < [ X(r) - R

QN{X(r)edBgr} 2|

Z 12dx

Since X (7) € 0Bg, an elementary geometric argument on the radial
projection yields for the integrand [ X (1) — R5| < 2|X(7) — 2|, which
in turn is < 2(Jz — y| + |y — z|). We also note that for X in the
domain of integration 2 N {X(7) € dBg} we have minp ;) [X| < R <
maxy 1) | X|; by R < 2 and definition (44), this implies miny g | X| <
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R < minp [ X| + M on the support of 7. We recall that by M < 1
and R < 2 we also have y € Bs there. Summing up, we infer from (

W2(g,9)

<1 f (e =yl + ly — 2I)d.
{y€Bs}n{minjg 1) | X|<R<mingg,y) | X|+M}

We now (re)introduce the index R and integrate over R € [1,2]; ex-
pressing the domain of integration {miny | X| < R < miny 1) | X|+M}
by a characteristic function and exchanging the order of integration we
obtain

2
/ W(grogr)dR <4M [ (o =yl + |y — 2|)*d.
1

{yeBs}
The use of (|2 —y|+[y-3))* < 2(|z —y[>+]y — 2[*) allows us to appeal
to the compatibility (é[g ;:

2
/ W?(gr. gr) SSM(/ |x—y|2d7r+/!y—z]2d7‘r).
1 R4 x B3

45 hoQ5 7
By definition (al 0J and by (h()?; this turns into (ao :

. C . 2096 . .
In preparation for estabé%qlmg (h’G%Tvve first provide an estimate of the
(50),

measure /@'hgl ned in W, Ci) shows that it is concentrated near
OBR, see (bb). By definition (hU) we have

/||z[ — R|dk = / ||z| — R|7(dzdydz).
QN{X(7)€dBR}

Since | X(7)| = R, we may write ||z| — R| = ||z| — |X(7)]| < |z —y]
Ay z|. By the same argument on the domain of integration as after
(b4), we obtain

/ 2] - Rlds
<

< / (e =yl + |y — =) (dedydz).
{y€Bs}N{min[g 1} | X|<R<maxo 1] | X}

Making the index R appear again and integrating in R, this gives

2
/ /Hz\ — RldkrdR
1

:/ (max | X | — min | X|)(|z — y| + |y — 2])7(dzdydz).
{yeBs} [O1] [0.1]

Using maxj1) | X| — minjy 1) | X| < |2 — y| and then Young’s inequality
in form of |z — y|(|lz — y| + |y — 2|) < 2|z — y|* + 3|y — z|* we thus
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9
obtain from (EOQ ;

2
/ /Hz| ~ RldrpdR
1

3
:5/{ B}|:10—y|2 m(dxdy) + /|y—z|2 (dydz).
yebs

045
By definition (al 0) and by ( h? ; this turns into
3 1
(55) / [ el = Rldsnar < 35+ 50,

The passage from %5%"50 h’G%’rehes on
(56) /83 ;2<3d1 /||z| Rldx.
Indeed, by (%%% (%%%%educes to
(57) /aB %gQ < 3971 (esssuprk) / ||z| — R|rdz.
R

Introducing polar coordinates z = g2 with r € (0,00) and 2z € 0By,

which are natural to re-express ( %3; %; ; reduces to the single-variable

statement
1

5(//1rd_1dr)2 < 3d_1(esssup/<;)/|r — R|kr®~tdr.

IB % gonvenient to rephrase this in terms of & = krd=!; since because of

we have esssupi < 39 lesssupk, it suffices to show for an arbitrary
functlon k>0 of r € (—o0,00) that

(58) ;(/lid’f’) (esssupri)/\r—Rmdr.

hol3
The argument for (%8%13 elementary: By translation in r, we may
assume R = 0; by homogeneity in kK, we may assume esssupk = 1,
that is, & € [0,1]. We now change perspective and seek to minimize
the r. h. s. [ |r|kdr under constraining the L. h. s. through prescribing
m = [ Rdr. By linearity of [ |r|idr in &, this functional assumes its
minimum on extremal points w. r. t. the constraints = € [0,1] and
[ Rdr = m. Those are characteristic functions of sets of Lebesgue
measure m. Clearly, the set I with |]] =m that minimizes [, |r|dr is

given by [ = [— the minimum is 2-, as desired.

27?]



