
LECTURE NOTES BY FELIX OTTO FOR THE PIMS
SUMMER SCHOOL ON OPTIMAL TRANSPORT

Version of July 18th 2022.

These notes are based on the paper “Quantitative linearization results
for the Monge-Ampère equation” with M. Goldman and M. Huesmann,
in particular Section 3 therein. Compared to this paper, the notes
come with more motivations, less PDE machinery, and a couple of
simplifications. They should allow for an independent reading.

In the next weeks, Lukas Koch and I plan to sketch the remaining part
of the proof, so that it is logically complete, and post the notes. I
thank Francesco Mattesini and Christian Wagner for a careful reading.
If you have questions, find typos – or more serious issues – please let
me/us know.

1. Connection of optimal transportation and the
Neumann problem for the Poisson equation

sec:orth
In this section, we motivate the connection between optimal transporta-
tion (OT) and the Neumann boundary value problem for the Poisson
equation.

1.1. Trajectories. For the above connection, it is convenient to adopt
a dynamical view upon OT, identifying a pair (x, y) of (matched) points
with the (straight) trajectory

[0, 1] 3 t 7→ X(t) := ty + (1− t)x.ao00ao00 (1)

Given an optimal transfer plan π for λ, µ, we ask the question on how
to choose a function φ in such a way that its gradient ∇φ captures the
velocity of the trajectories, meaning

Ẋ(t) ≈ ∇φ(X(t)) for (x, y) ∈ suppπ.ao65ao65 (2)

As we shall see, the answer relates to the Poisson equation −4φ =
µ− λ.

We are interested in connecting to a boundary value problem for the
Poisson equation on some domain, say a ball BR of some radius R (to
be optimized later) and center w. l. o. g. given by the origin. We are
thus led to restrict ourselves to the set of trajectories that spend some
time in the closure B̄R:

Ω := { (x, y) | ∃t ∈ [0, 1] X(t) ∈ B̄R }.ao17ao17 (3)
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To every (x, y) ∈ Ω, we associate the entering and exiting times 0 ≤
σ ≤ τ ≤ 1 of the corresponding trajectory

σ := min{t ∈ [0, 1] |X(t) ∈ B̄R},
τ := max{t ∈ [0, 1] |X(t) ∈ B̄R}.

ao66ao66 (4)

(Note that some trajectories may both enter and exit.) Given a transfer
plan π, we keep track of where the trajectories enter and exit BR, which
is captured by two (non-negative) measures f and g concentrated on
∂BR, defined throughˆ

ζdf =

ˆ
Ω∩{X(σ)∈∂BR}

ζ(X(σ))dπ,ao09ao09 (5)

ˆ
ζdg =

ˆ
Ω∩{X(τ)∈∂BR}

ζ(X(τ))dπao09bisao09bis (6)

for all continuous and compactly supported functions ζ. Note that the
set of trajectories Ω ∩ {X(σ) ∈ ∂BR} = {∃t ∈ [0, 1] X(t) ∈ ∂BR}
implicitly defines a Borel measurable subset of Rd × Rd, namely the
pre-image under the mapping (

ao00
1), which is continuous from Rd × Rd

into C0([0, 1]). Hence it is legitimate to integrate against π as in (
ao09
5).

lem:orth Lemma 1. We have for any admissible π and any continuously differ-
entiable function φ on B̄Rˆ

Ω

ˆ τ

σ

|Ẋ(t)−∇φ(X(t))|2dtdπ

=

ˆ
Ω

ˆ τ

σ

|Ẋ(t)|2dtdπ +

ˆ
Ω

ˆ τ

σ

|∇φ(X(t))|2dtdπ

− 2

ˆ
BR

φd(µ− λ)− 2

ˆ
∂BR

φd(g − f).ao08ao08 (7)

For later purpose, we record

λ(BR) + f(∂BR) = µ(BR) + g(∂BR).ao44ao44 (8)

Proof of Lemma
lem:orth
1. For identity (

ao08
7) we note that for the mixed

term we have by the chain rule Ẋ(t) · ∇φ(X(t)) = d
dt

[φ(X(t))] and

thus by the fundamental theorem of calculus
´ τ
σ
Ẋ(t) · ∇φ(X(t))dt =

φ(X(τ)) −φ(X(σ)). In view of definition (
ao66
4) we either have X(σ) ∈

∂BR, or we have X(σ) ∈ BR and thus σ = 0 and X(σ) = x, so that
we may ignore (x, y) ∈ Ω in this latter case. Hence

´
Ω
φ(X(σ))dπ

=
´

Ω∩{X(σ)∈∂BR}
φ(X(σ))dπ +

´
{x∈BR}

φ(x)dπ. By definition (
ao09
5), the

first integral is
´
φdf . By admissibility of π, the second integral is´

BR
φdλ. Likewise, one obtains

´
Ω
φ(X(τ))dπ =

´
φdg +

´
BR
φdµ.

Specifying to φ = 1, and thus ∇φ = 0 so that the mixed term vanishes,
we learn (

ao44
8) from the above two identities.
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ss:pert
1.2. Perturbative regime. We will focus on a “perturbative regime”,
which comes in form of two local smallness conditions. Smallness con-
ditions have to be formulated in a non-dimensionalized way, which we
implement by expressing this local smallness condition on a ball of
non-dimensionalized radius, which for convenience is taken to be 3.

The first smallness condition involves the data (thus the letter D), that
is, the two measures λ and µ. We monitor how close these measures are
to the Lebesgue measure on B3. It is natural to quantify this in terms
of the Wasserstein distance. Since the mass λ(B3) in general is not
equal to the Lebesgue volume |B3|, we have to split this into two: We
monitor how Wasserstein-close the restriction λxB3 is to the uniform
measure κλdxxB3, where κλ := λ(B3)

|B3| , and we monitor how close this

density κλ is to unity. It is convenient to do both on the squared level:

D : = W 2(λxB3, κλdxxB3) + (κλ − 1)2

+ same expression with λ µ.ao88ao88 (9)

The second smallness condition involves the solution itself, i. e. π. It
monitors the length of trajectories that start or end in B3. It does so
in a square-averaged sense, like the total cost function itself. In fact,
it is a localization of the cost functional (or energy, thus the letter E):

E :=

ˆ
(B3×Rd)∪(Rd×B3)

|x− y|2dπ.ao45ao45 (10)

We expect (and shall rigorously argue later) that in the perturbative
regime E + D � 1 and provided R ∈ [1, 2] we have for the second
r. h. s. term in (

ao08
7)

ˆ
Ω

ˆ τ

σ

|∇φ(X(t))|2dtdπ ≈
ˆ
BR

|∇φ|2.ao14ao14 (11)

Indeed, for E � 1, trajectories do not move much so that
ˆ

Ω

ˆ τ

σ

|∇φ(X(t))|2dtdπ ≈
ˆ
{x∈BR}

|∇φ(x)|2dπ =

ˆ
BR

|∇φ|2dλ,

where the last identity follows from admissibility. Furthermore, for
D � 1, λ is close to Lebesgue so that

ˆ
BR

|∇φ|2dλ ≈
ˆ
BR

|∇φ|2.
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1.3. Connection to the Neumann problem for the Poisson equa-
tion. Hence in order to achieve (

ao65
2), in view of (

ao08
7) and (

ao14
11), we are led

to minimizeˆ
BR

|∇φ|2 − 2

ˆ
BR

φd(µ− λ)− 2

ˆ
∂BR

φd(g − f)ao11ao11 (12)

in φ. A minimizer φ of (
ao11
12), if it exists as a continuously differentiable

function on B̄R, would be characterized by the Euler-Lagrange equationˆ
BR

∇ζ · ∇φ−
ˆ
BR

ζd(µ− λ)−
ˆ
∂BR

ζd(g − f) = 0ao62ao62 (13)

for all continuously differentiable test functions ζ on BR. If φ even
exists as a twice continuously differentiable function on B̄R, we could
appeal to the calculus identity ∇ζ · ∇φ = ∇ · (ζ∇φ) − ζ4φ and the
divergence theorem in form of

´
BR
∇ · (ζ∇φ) =

´
∂BR

ζν · ∇φ, where

ν(x) = x
R

denotes the outer normal to ∂BR in a point x, to obtain the
integration by parts formulaˆ

BR

∇ζ · ∇φ =

ˆ
BR

ζ(−4φ) +

ˆ
∂BR

ζν · ∇φ.ao68ao68 (14)

Hence (
ao62
13) can be reformulated and regrouped asˆ
BR

ζ(−4φ− d(µ− λ)) +

ˆ
∂BR

ζ(ν · ∇φ− d(g − f)) = 0.ao63ao63 (15)

Considering first all test functions ζ’s that vanish on ∂BR, we learn
from (

ao63
15) that −4φ = µ − λ distributionally in BR. Since µ − λ is

a bounded measure, the first term in (
ao63
15) thus vanishes also for test

functions that do not vanish on ∂BR. Hence the second term in (
ao63
15)

vanishes individually, which means ν · ∇φ = g − f distributionally on
∂BR. Hence we end up with what is called the Poisson equation with
Neumann boundary conditions

−4φ = µ− λ in BR, ν · ∇φ = g − f on ∂BR.ao12ao12 (16)

This is a classical elliptic boundary value problem, which for sufficiently
regular µ − λ and g − f has a unique twice differentiable solution,
provided (

ao44
8) holds, and ˆ

BR

φ = 0ao61ao61 (17)

is imposed. This motivates the connection between optimal transporta-
tion and the (short) Neumann-Poisson problem.

However, for rough (like sum of Diracs) measures λ, µ, and thus also
rough measures f, g, the solution φ of (

ao12
16), even if it exists for this

linear problem, will be rough, too. In particular, (
ao14
11) may not be true;

even worse, both the l. h. s. and the r. h. s. might be infinite. Hence we
shall approximate both µ− λ and g − f by smooth functions (in fact,
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we shall approximate µ− λ by a constant function). The best way to
organize the output of Lemma

lem:orth
1 is given by

cor:orth Corollary 1. We have for any admissible π and any twice continu-
ously differentiable function φ on B̄R

ˆ
Ω

ˆ τ

σ

|Ẋ(t)−∇φ(X(t))|2dtdπ

≤
ˆ

Ω

|x− y|2dπ −
ˆ
BR

|∇φ|2

+ 2

ˆ
BR

φ(−4φ− d(µ− λ)) + 2

ˆ
∂BR

φ(ν · ∇φ− d(g − f))

+

ˆ
Ω

ˆ τ

σ

|∇φ(X(t))|2dtdπ −
ˆ
BR

|∇φ|2.ao10ao10 (18)

As we already argued, see (
ao14
11), we expect the term in last line (

ao10
18) to be

negligible. The integrals in the second r. h. s. line can be made small
by approximately solving (

ao12
16) – so that there is a trade-off between

making the last line and the second line small. However, the main
open task is to argue, based on the optimality of π, that the term in
the first r. h. s. line is small for an approximate solution of (

ao12
16)

Proof of Corollary
cor:orth
1. The upgrade of identity (

ao08
7) to inequality

(
ao10
18) relies on

ˆ
Ω

ˆ τ

σ

|Ẋ(t)|2dtdπ ≤
ˆ

Ω

|x− y|2dπ,ao46ao46 (19)

ˆ
BR

|∇φ|2 =

ˆ
BR

φ(−4φ) +

ˆ
∂BR

φν · φ.ao48ao48 (20)

Inequality (
ao46
19) follows from

´ τ
σ
|Ẋ(t)|2dt ≤

´ 1

0
|Ẋ(t)|2dt = |x − y|2.

Identity (
ao48
20) follows from (

ao68
14) for ζ = φ.

1.4. Localizing optimality. As mentioned after Corollary
cor:orth
1, the main

open task is to estimate the first r. h. s. line of (
ao10
18). For this, we will

(for the first time) use that π is optimal. In order to connect to the
Neumann-Poisson problem on BR, we need to leverage optimality in a
localized way. Of course, it will in general not be true that the cost of
π localized to (BR×Rd)∪(Rd×BR) is estimated by the transportation
cost between the localized measures λxBR and µxBR. However, this is
almost true if one adds the distribution of the entering points f , see
(
ao09
5), and exiting points g, see (

ao09bis
6), respectively:
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lem:opt Lemma 2. For π optimal we have

( ˆ
Ω

|x− y|2dπ
) 1

2

≤ W (λxBR + f, µxBR + g) +
(
2

ˆ
{∃t∈[0,1] X(t)∈∂BR}

|x− y|2dπ
) 1

2 .ao70ao70 (21)

Lemma
lem:opt
2 controls the transportation cost coming from those trajec-

tories that spend some time in B̄R, which amounts to the l. h. s. of
(
ao70
21) according to definition (

ao17
3), by an OT problem localized to B̄R as

described by the first r. h. s. term. It does so up to the transportation
cost coming from those (fewer) trajectories that cross (or touch) the
boundary ∂BR, see the second r. h. s. term. Eventually, one has to
argue that this last term is negligible for a good choice of R.

As its form suggests, (
ao70
21) has the structure of a triangle inequality. In

fact, its proof has similarities with the proof of the triangle inequality
for W , using a disintegration (or conditioning) argument.

Proof of Lemma
lem:opt
2. We now introduce the distribution of x = X(0)

under π conditioned on the event that the trajectory X enters at
z ∈ ∂BR. In less probabilistic and more measure-theoretic terms (“dis-
integration”), we introduce the (weakly continuous) family of proba-
bility measures {λz}z∈∂BR

such that

ˆ
Ω∩{X(σ)∈∂BR}

ζ(x,X(σ))π(dxdy) =

ˆ
∂BR

ˆ
ζ(x, z)λz(dx)f(dz),ao79ao79 (22)

which is possible by (
ao09
5). Here, ζ is an arbitrary test function on Rd×Rd.

Likewise, we introduce the probability distribution {µw}w∈∂BR
of the

end points of trajectories that exit in w:

ˆ
Ω∩{X(τ)∈∂BR}

ζ(X(τ), y)π(dxdy) =

ˆ
∂BR

ˆ
ζ(w, y)µw(dy)f(dw).ao80ao80 (23)

Let π̄ denote an optimal plan for W (λxBR + f, µxBR + g). Equipped
with these objects, we now define a competitor π̃ for π that mixes π
with π̄, in the sense that it takes the trajectories from π that stay
outside of B̄R, the trajectories from π̄ that stay inside (the open) BR,
and concatenates trajectories X from π that enter or exit B̄R with
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trajectories of π̄ that start or end in ∂BR:

ˆ
ζ(x, y)π̃(dxdy) =

ˆ
Ωc

ζ(x, y)π(dxdy)

+

ˆ
BR×BR

ζ(x, y)π̄(dxdy)

+

ˆ
∂BR×BR

ˆ
ζ(x, y)λz(dx)π̄(dzdy)

+

ˆ
BR×∂BR

ˆ
ζ(x, y)µw(dy)π̄(dxdw)

+

ˆ
∂BR×∂BR

ˆ ˆ
ζ(x, y)µw(dy)λz(dx)π̄(dzdw).ao73ao73 (24)

It is straightforward to see that π̃ has marginals λ and µ; let us
check the first by using (

ao73
24) for a function ζ = ζ(x): Since µw is a

probability measure to the effect of
´
ζ(x)µw(dy) = ζ(x), the second

and the forth r. h. s. term of (
ao73
24) combine to

´
BR×Rd ζ(x)π̄(dxdy).

Here, we used that π̄ is supported on B̄R × B̄R. Likewise, the third
and the fifth term combine to

´
∂BR×Rd

´
ζ(x)λz(dx)π̄(dzdy). By ad-

missibility of π̄, the combination of the second and forth term gives´
BR
ζ(x)µ(dx), which as in the proof of Lemma

lem:orth
1 (by admissibility of π)

can be seen to agree with
´

Ω∩{X(σ)∈BR}
ζ(x)π(dxdy). Since

´
ζ(x)λz(dx)

does not depend on y, for the same reason, the combination of the
third and fifth term renders

´
∂BR

ζ(z)f(dz), which by definition (
ao09
5) is

equal to
´

Ω∩{X(σ)∈∂BR}
ζ(x)π(dxdy). Hence these four terms combine

to
´

Ω
ζ(x)π(dxdy). Therefore, the r. h. s. of (

ao73
24) collapses as desired to´

ζ(x)π(dxdy), which coincides with
´
ζ(x)λ(dx) by admissibility of π.

By optimality of π, we have
´
|x− y|2dπ ≤

´
|x− y|2dπ̃; rewriting this

as
´

Ω
|x − y|2dπ +

´
Ωc |x − y|2dπ ≤

´
|x − y|2dπ̃, and using (

ao73
24) for

ζ(x, y) = |x− y|2, we gather

( ˆ
Ω

|x− y|2dπ
) 1

2 ≤ ‖(f2, f3, f4, f5)‖,ao81ao81 (25)

where the four functions f2, · · · , f5 ≥ 0 are defined by

f2(x, y) := |x− y|, f 2
5 (z, w) :=

ˆ ˆ
|x− y|2µw(dy)λz(dx),

f 2
3 (z, y) :=

ˆ
|x− y|2λz(dx), f 2

4 (x,w) :=

ˆ
|x− y|2µw(dy),
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and the norm ‖ · ‖ is defined through

‖(f2, f3, f4, f5)‖2

=

ˆ
BR×BR

f 2
2 (x, y)π̄(dxdy) +

ˆ
∂BR×BR

f 2
3 (z, y)π̄(dzdy)

+

ˆ
BR×∂BR

f 2
4 (x,w)π̄(dxdw) +

ˆ
∂BR×∂BR

f 2
5 (z, w)π̄(dzdw).ao75ao75 (26)

By the triangle inequality w. r. t. L2(λz) and L2(µw), and using that
λz, µw are probability measures, we obtain

f3 ≤ |z − y|+ f̃3, f4 ≤ |x− w|+ f̃4, f5 ≤ |z − w|+
√

2f̃5,ao82ao82 (27)

where the three functions f̃3, f̃4, f̃5 ≥ 0 are defined by

f̃ 2
3 (z, y) :=

ˆ
|x− z|2λz(dx), f̃ 2

4 (x,w) :=

ˆ
|w − y|2µw(dy),ao78ao78 (28)

f̃ 2
5 (z, w) := f̃ 2

3 (z, y) + f̃ 2
4 (x,w).ao77ao77 (29)

The factor of
√

2 in (
ao82
27) arises because of f̃3 + f̃4 ≤

√
2f̃5.

From (
ao82
27) we obtain by the triangle inequality for ‖ · ‖( ˆ

Ω

|x− y|2dπ
) 1

2
(
ao81
25)

≤ ‖(f2, f3, f4, f5)‖

≤ ‖(|x− y|, |z − y|, |x− w|, |z − w|)‖+
√

2‖(0, f̃3, f̃4, f̃5)‖,ao76ao76 (30)

where we gave up a factor of
√

2 on f̃3, f̃4. By definition (
ao75
26) of ‖ · ‖,

the first r. h. s. term in (
ao76
30) coincides with the square root of

´
B̄R×B̄R

|x
−y|2π̄, which by optimality of π̄ is W (λxBR+f, µxBR+g), as desired.

By definitions (
ao75
26), (

ao78
28), and (

ao77
29), the second r. h. s. term in (

ao76
30)

is equal to 2 times
´
∂BR×Rd

´
|x −z|2λz(dx)π̄(dzdy) +

´
Rd×∂BR

´
|w −

y|2µy(dy)π̄(dxdw). By admissibility of π̄, this sum is equal to
´
∂BR

´
|x−

z|2λz(dx)f(dz) +
´
∂BR

´
|w − y|2µy(dy)g(dw). By definitions (

ao79
22) and

(
ao80
23), this coincides with

´
Ω∩{X(σ)∈∂BR}

|x−X(σ)|2dπ +
´

Ω∩{X(τ)∈∂BR}
|X(τ)−

y|2dπ. Since on the intersection Ω ∩{X(σ) ∈ ∂BR} ∩{X(τ) ∈ ∂BR}
we have |x−X(σ)|2 + |X(τ)− y|2 ≤ |x− y|2, this sum is estimated by´

Ω∩({X(σ)∈∂BR}∪{X(τ)∈∂BR})
|x− y|2dπ. Note that this set of integration

coincides with {∃t ∈ [0, 1] X(t) ∈ ∂BR}, as desired.

1.5. Constructing a competitor based on the Neumann-Poisson
problem. As mentioned after Corollary

cor:orth
1, the remaining task is to es-

timate the first r. h. s. line of (
ao10
18). For this, we will use Lemma

lem:opt
2

and construct a competitor for W (λxBR + f, µxBR + g) based on φ,
the solution of the Neumann-Poisson problem (

ao12
16), where we think of

the measures λ, µ as having continuous densities with respect to the
Lebesgue measure.
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lem:comp2 Lemma 3.

W 2(λxBR + f, µxBR + g) ≤ 1

min{minB̄R
λ,minB̄R

µ}

ˆ
BR

|∇φ|2.ao20ao20 (31)

Lemma
lem:comp2
3 makes a second dilemma apparent: The intention was to

use it in conjunction with Lemma
lem:opt
2 to obtain an estimate on the first

r. h. s. line in (
ao10
18). This however would require that minB̄R

λ,minB̄R
µ '

1, so a (one-sided) closeness of µ and λ to the Lebesgue measure in a
strong topology, as opposed to the closeness in a weak topology as ex-
pressed by (

ao88
9). Hence this provides another reason for approximating

λ and µ by more regular versions.

Proof Lemma
lem:comp2
3. The proof is short if one uses the Benamou-Brenier

formulation in its distributional version, as we shall do. For every
t ∈ [0, 1] we introduce the (singular non-negative) measure

ρt := t(µxBR + g) + (1− t)(λxBR + f)ao84ao84 (32)

and the (t-independent) vector-valued measure

jt := ∇φdxxBR.ao85ao85 (33)

We note that (
ao12
16) in its distributional form of (

ao62
13) can be re-expressed

as

d

dt

ˆ
ζdρt =

ˆ
∇ζ · djtao83ao83 (34)

for all test functions ζ. In the jargon of the Benamou-Brenier for-
mulation, which is inspired from continuum mechanics, ρt is a (mass)
density, jt is a flux, and (

ao83
34) is the distributional version of the conti-

nuity equation ∂tρt +∇ · jt = 0, expressing conservation of mass.

Following Benamou-Brenier one takes the Radon-Nikodym derivative
djt
dρt

of the (vectorial) measure jt w. r. t. ρt (it plays the role of an

Eulerian velocity field), and considers the expression that corresponds
to the total kinetic energy:

1

2

ˆ ∣∣∣∣ djtdρt
∣∣∣∣2dρt := sup

{ˆ
ξ · djt −

ˆ
1

2
|ξ|2dρt

}
∈ [0,∞],ao86ao86 (35)

where the supremum is taken over all continuous vector fields ξ with
compact support. Benamou-Brenier gives

W 2(ρ0, ρ1) ≤
ˆ 1

0

ˆ ∣∣∣∣ djtdρt
∣∣∣∣2dρtdt.ao87ao87 (36)

Since in our case, jt is supported in (the open) BR, see (
ao85
33), in the

r. h. s. of (
ao86
35) we may restrict ourselves to ξ supported in BR. In this

case we have by definition (
ao84
32) that

´
ξ · djt−

´
1
2
|ξ|2dρt =

´
BR

(
ξ · ∇φ

−1
2
|ξ|2(tµ + (1− t)λ)

)
. Since we have that µ, λ > 0 a. e. , by Young’s
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inequality in form of ξ · ∇φ ≤ 1
2
(tµ + (1 − t)λ)|ξ|2 + 1

2(tµ+(1−t)λ)
|∇φ|2

we thus obtain for the r. h. s. of (
ao87
36)

ˆ ∣∣∣∣ djtdρt
∣∣∣∣2dρt ≤ ˆ

BR

|∇φ|2

tµ+ (1− t)λ
≤ 1

min{minB̄R
λ,minB̄R

µ}

ˆ
BR

|∇φ|2.

Since by definition (
ao84
32), the l. h. s. of (

ao87
36) coincides with the l. h. s. of

(
ao20
31), we are done.

2. Harmonic approximation
sec:harm

The purpose of this section is to establish that the displacement in an
optimal plan π can locally be approximated by a harmonic gradient
∇φ (by which we mean that for each Cartesian direction i = 1, · · · , d,
the component ∂iφ is harmonic, as a consequence of −4φ = const).
This holds provided we are in the perturbative regime, see Subsection
ss:pert
1.2, where E and D are defined. More precisely, given any fraction
0 < θ � 1, there exists a threshold ε > 0 for E +D so that below that
threshold, the l. h. s. of (

ao89
37) is only a fraction θ of E, plus a possibly

large multiple of D.

Proposition 1. For every θ > 0, there exist ε(d, θ) > 0 and C(d, θ) <
∞ such that the following holds. Let π be optimal for λ, µ; provided
E +D ≤ ε, there exists a harmonic ∇φ on B1 such thatˆ

(B1×Rd)∪(Rd×B1)

|(y − x)−∇φ(x)|2dπ ≤ θE + CD,ao89ao89 (37)

ˆ
B1

|∇φ|2 ≤ C(E +D).ao93ao93 (38)

(The proof actually reveals an explicit dependence of ε and C on θ.)
We will obtain ∇φ by solving the Neumann-Poisson problem

−4φ =
µ(BR)

|BR|
− λ(BR)

|BR|
in BR and ν · ∇φ = ḡ − f̄ on ∂BR,ao92ao92 (39)

where f̄ , ḡ are suitable regular approximations of f, g, and where the
radius R ∈ [1, 2] is well-chosen. Hence by an application of Lemma

lem:comp2
3

to this setting, we have

W 2(
λ(BR)

|BR|
dxxBR + f̄ ,

µ(BR)

|BR|
dxxBR + ḡ)

≤ 1

min{λ(BR)
|BR|

, µ(BR)
|BR|
}

ˆ
BR

|∇φ|2.ao90ao90 (40)

Working with (
ao92
39) creates the additional task of estimating the first

r. h. s. term (
ao70
21) of Lemma

lem:opt
2 by the l. h. s. of (

ao90
40), which is conveniently
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done with help of the triangle inequality:

W (λxBR + f,µxBR + g) ≤ W (
λ(BR)

|BR|
dxxBR + f̄ ,

µ(BR)

|BR|
dxxBR + ḡ)

+W (λxBR,
λ(BR)

|BR|
dxxBR) + same term with λ µ

+W (f, f̄) + same term with f  g.ao91ao91 (41)

Combining (
ao70
21), (

ao90
40) and (

ao91
41) we see that the first r. h. s. line

´
Ω
|x−

y|2dπ −
´
BR
|∇φ|2 in Corollary

cor:orth
1 is less than or equal to(

1− 1

min{λ(BR)
|BR|

, µ(BR)
|BR|
}
) ˆ

BR

|∇φ|2ao94ao94 (42)

plus the square of(
2

ˆ
{∃t∈[0,1] X(t)∈∂BR}

|x− y|2dπ
) 1

2

+W (λxBR,
λ(BR)

|BR|
dxxBR) + same term with λ µ

+W (f, f̄) + same term with f  g.ao95ao95 (43)

We expect (and can show for a good radius R ∈ [1, 2]) that in the

regime D � 1, the prefactor on the r. h. s. of (
ao94
42) is .

√
D, and that

the second line in (
ao95
43) is . D, as consistent with (

ao89
37).

The main remaining work is to identify a good radius R ∈ [1, 2] and to
construct f̄ and ḡ. Again, there is a trade-off/conflict of interest:

• On the one hand, ḡ− f̄ has to be sufficiently regular so that via
(
ao92
39), φ is sufficiently regular. In particular, we need (

ao93
38) (with

B1 replaced by the larger BR) to obtain that the error (
ao94
42) is

o(E+D). This is ensured by (
ao96
46) in the upcoming Lemma

lem:approx
4. In

fact, it even yields uniform integrability of |∇φ|2 on BR, which
is crucial to show that also the last line in (

ao10
18) is o(E +D).

• On the other hand, (f̄ , ḡ) has to be sufficiently close to (f, g).
In particular, in view of the last term in (

ao95
43) we need W 2(f, f̄)

+W 2(g, ḡ) = o(E) + O(D). This is ensured by (
ao96
46) in the

upcoming Lemma
lem:approx
4. Here, we have to rely on M � 1 in our

regime E+D � 1, which is a consequence of the monotonicity
of suppπ by an argument not (yet) contained in these notes.
M � 1 will also be needed to show that the previous to last
line in (

ao10
18) is o(E) +O(D) for a good R.

In the upcoming approximation lemma we restrict to g for brevity.

lem:approx Lemma 4. Consider the maximal length of trajectories that spend some
time in B̄2

M := sup{ |x− y| | (x, y) ∈ suppπ ∩ {∃t ∈ [0, 1] |X(t) ∈ B̄2} }.ho03ho03 (44)
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Provided M < 1, for every R ∈ [1, 2] exists a function ḡR on ∂BR such
that ˆ 2

1

W 2(gR, ḡR) dR ≤ 8M(E +D),ao97ao97 (45)

ˆ 2

1

ˆ
∂BR

ḡ2
R dR ≤ 3dκµ(E +D).ao96ao96 (46)

Note that we put an index R on g because the definition (
ao09bis
6) obviously

depends on R. Adding (
ao97
45), divided by M , and (

ao96
46), we learn that

there exists R ∈ [1, 2] such that 1
M
W 2(gR, ḡR) +

´
∂BR

ḡ2
R ≤ (8 + 3dκµ)

(E+D). We use the same addition argument to show that we can find
a common R that suits both f and g.

Proof of Lemma
lem:approx
4. We fix an R ∈ [1, 2] and start with the con-

struction of ḡR, momentarily returning to our short-hand notation ḡ.
Let π̄ be optimal for W 2(µxB3, κµdzxB3); note that π̄ is supported on
B3×B3. We extend it (trivially) by the identity to Rd×Rd; the exten-
sion (which we still call) π̄ is admissible for W 2(µ, κµdzxB3 + µxBc

3).
We retain ˆ

|y − z|2dπ̄ = W 2(µxB3, κµdzxB3)
(
ao88
9)

≤ D.ho05ho05 (47)

Like in the proof of the triangle inequality for the Wasserstein metric,
we disintegrate π̄ according toˆ

ζ(y, z)π̄(dz|y)µ(dy) =

ˆ
ζ(y, z)π̄(dydz),ho09ho09 (48)

since this family of (conditional) probability measures {π̄(·|y)}y∈Rd al-
lows us to define the measure π̃ on Rd × Rd × Rd viaˆ

ζ(x, y, z)π̃(dxdydz) =

ˆ ˆ
ζ(x, y, z)π̄(dz|y)π(dxdy),

which has desired property

marginal of π̃ w. r. t. (x, y) = π,
marginal of π̃ w. r. t. (y, z) = π̄.

ao99ao99 (49)

We still associate the trajectory X to a pair (x, y) as in (
ao00
1). We ex-

tend this definition by associating to a triplet (x, y, z) the continuous
piecewise affine trajectory defined by (

ao00
1) followed by

X(t) = (t− 1)z + (2− t)y for t ∈ [1, 2].

We now are interested in the distribution κ of the endpoint z = X(2)
of those trajectories that exit B̄R during the first time interval [0, 1],
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i. e. those trajectories X ∈ Ω with X(τ) ∈ ∂BR. This distribution is
defined by ˆ

ζdκ =

ˆ
Ω∩{X(τ)∈∂BR}

ζ(z)π̃(dxdydz).ho01ho01 (50)

Starting from the triangle inequality in form of |y| ≤ |y −X(τ)|+R ≤ |x
−y| +R, we see that our assumption M < 1, cf. (

ao99
49), in conjunction

with R ≤ 2 leads to y = X(1) ∈ B3 for (x, y) ∈ suppπ. By the first
item in (

ao99
49), this extends to (x, y, z) ∈ suppπ̃. By the second item in

(
ao99
49), this yields z = X(2) ∈ B3 by π̄(B3 × Bc

3) = 0 according to our
extension of π̄. Hence we have

κ is supported in B3.ho14ho14 (51)

Therefore by the second item in (
ao99
49) and the admissibility of π̄ for

W 2(µ, κµdzxB3 +µxBc
3), we obtainˆ

ζdκ ≤
ˆ
{z∈B3}

ζ(z)π̄(dydz) = κµ

ˆ
B3

ζ provided ζ ≥ 0.

Hence κ has a Lebesgue density, we still denote by κ, that satisfies

κ ≤ κµ Lebesgue almost surely.ho11ho11 (52)

Finally, we radially project κ onto ∂BR:ˆ
ζdḡ =

ˆ
ζ(R

z

|z|
)κ(dz).ho02ho02 (53)

This concludes the construction of ḡ, we now turn to its estimate.

We start with (
ao97
45) and note that an admissible plan for W 2(g, ḡ) is

given by ˆ
Ω∩{X(τ)∈∂BR}

ζ(X(τ), R
z

|z|
)dπ̃.

Indeed, on the one hand, for ζ only depending on the first variable,
π̃ may be replaced by π according to the first item in (

ao99
49) so that

we obtain
´
ζdg by its definition (

ao09bis
6). On the other hand, for ζ only

depending on the second variable, we obtain
´
ζdḡ by combining (

ho01
50)

and (
ho02
53). Hence we have

W 2(g, ḡ) ≤
ˆ

Ω∩{X(τ)∈∂BR}
|X(τ)−R z

|z|
|2dπ̃.ho06ho06 (54)

Since X(τ) ∈ ∂BR, an elementary geometric argument on the radial
projection yields for the integrand |X(τ)−R z

|z| | ≤ 2|X(τ)− z|, which

in turn is ≤ 2(|x − y| + |y − z|). We also note that for X in the
domain of integration Ω ∩ {X(τ) ∈ ∂BR} we have min[0,1] |X| ≤ R ≤
max[0,1] |X|; by R ≤ 2 and definition (

ho03
44), this implies min[0,1] |X| ≤
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R ≤ min[0,1] |X| + M on the support of π̃. We recall that by M < 1
and R ≤ 2 we also have y ∈ B3 there. Summing up, we infer from (

ho06
54)

W 2(g, ḡ)

≤ 4

ˆ
{y∈B3}∩{min[0,1] |X|≤R≤min[0,1] |X|+M}

(|x− y|+ |y − z|)2dπ̃.

We now (re)introduce the index R and integrate over R ∈ [1, 2]; ex-
pressing the domain of integration {min[0,1] |X| ≤ R ≤ min[0,1] |X|+M}
by a characteristic function and exchanging the order of integration we
obtain ˆ 2

1

W 2(gR, ḡR)dR ≤ 4M

ˆ
{y∈B3}

(|x− y|+ |y − z|)2dπ̃.

The use of (|x−y|+ |y−z|)2 ≤ 2(|x−y|2 + |y−z|2) allows us to appeal
to the compatibility (

ao99
49):

ˆ 2

1

W 2(gR, ḡR) ≤ 8M
( ˆ

Rd×B3

|x− y|2dπ +

ˆ
|y − z|2dπ̄

)
.

By definition (
ao45
10) and by (

ho05
47) this turns into (

ao97
45).

In preparation for establishing (
ao96
46), we first provide an estimate of the

measure κ defined in (
ho01
50), which shows that it is concentrated near

∂BR, see (
ho07
55). By definition (

ho01
50) we have

ˆ
||z| −R|dκ =

ˆ
Ω∩{X(τ)∈∂BR}

||z| −R|π̃(dxdydz).

Since |X(τ)| = R, we may write ||z| − R| = ||z| − |X(τ)|| ≤ |x − y|
+|y − z|. By the same argument on the domain of integration as after
(
ho06
54), we obtain
ˆ
||z| −R|dκ

≤
ˆ
{y∈B3}∩{min[0,1] |X|≤R≤max[0,1] |X|}

(|x− y|+ |y − z|)π̃(dxdydz).

Making the index R appear again and integrating in R, this gives
ˆ 2

1

ˆ
||z| −R|dκR dR

=

ˆ
{y∈B3}

(max
[0,1]
|X| −min

[0,1]
|X|)(|x− y|+ |y − z|)π̃(dxdydz).

Using max[0,1] |X| −min[0,1] |X| ≤ |x− y| and then Young’s inequality
in form of |x − y|(|x − y| + |y − z|) ≤ 3

2
|x − y|2 + 1

2
|y − z|2 we thus
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obtain from (
ao99
49)ˆ 2

1

ˆ
||z| −R|dκR dR

=
3

2

ˆ
{y∈B3}

|x− y|2π(dxdy) +
1

2

ˆ
|y − z|2π̄(dydz).

By definition (
ao45
10) and by (

ho05
47) this turns intoˆ 2

1

ˆ
||z| −R|dκR dR ≤

3

2
E +

1

2
D.ho07ho07 (55)

The passage from (
ho07
55) to (

ao96
46) relies onˆ

∂BR

1

2
ḡ2 ≤ 3d−1κµ

ˆ
||z| −R|dκ.ho08ho08 (56)

Indeed, by (
ho11
52), (

ho08
56) reduces toˆ

∂BR

1

2
ḡ2 ≤ 3d−1(esssupκ)

ˆ
||z| −R|κdz.ho12ho12 (57)

Introducing polar coordinates z = rẑ with r ∈ (0,∞) and ẑ ∈ ∂B1,
which are natural to re-express (

ho02
53), (

ho12
57) reduces to the single-variable

statement
1

2

( ˆ
κrd−1dr

)2 ≤ 3d−1(esssupκ)

ˆ
|r −R|κrd−1dr.

It is convenient to rephrase this in terms of κ̄ = κrd−1; since because of
(
ho14
51) we have esssupκ̄ ≤ 3d−1esssupκ, it suffices to show for an arbitrary

function κ̄ ≥ 0 of r ∈ (−∞,∞) that

1

2

( ˆ
κ̄dr

)2 ≤ (esssupκ̄)

ˆ
|r −R|κ̄dr.ho13ho13 (58)

The argument for (
ho13
58) is elementary: By translation in r, we may

assume R = 0; by homogeneity in κ̄, we may assume esssupκ̄ = 1,
that is, κ̄ ∈ [0, 1]. We now change perspective and seek to minimize
the r. h. s.

´
|r|κ̄dr under constraining the l. h. s. through prescribing

m =
´
κ̄dr. By linearity of

´
|r|κ̄dr in κ̄, this functional assumes its

minimum on extremal points w. r. t. the constraints κ̄ ∈ [0, 1] and´
κ̄dr = m. Those are characteristic functions of sets of Lebesgue

measure m. Clearly, the set I with |I| = m that minimizes
´
I
|r|dr is

given by I = [−m
2
, m

2
]; the minimum is m2

2
, as desired.


