The principal Chebotarev density theorem

Kelly O'Connor Colorado State University

Joint work with Lian Duan, Ning Ma, and Xiyuan Wang

Lethbridge Number Theory and Combinatorics Seminar February 13, 2023

- The Chebotarev density theorem
- Hilbert exact sequences
- **•** Principal density
- Non-splitting of HES
- **•** Generalizations

At the time of Gauss, it was already noticed that there are the "same number" of prime integers which satisfy $p \equiv 1 \mod 4$ and those which satisfy $p \equiv 3 \mod 4$.

This implies that as one considers larger and larger primes, the frequency of primes that completely split and those which are inert in Z[i] approaches 1*/*2*.*

Let K*/*k be a finite Galois extension of number fields, with Galois group $G = \text{Gal}(K/k)$. Denote by \mathcal{P}_K the set of prime ideals of the ring of integers $\mathcal{O}_\mathcal{K}.$ For a prime ideal $\mathfrak{P} \in \mathcal{P}_\mathcal{K}.$ let $\mathcal{N}_{\mathcal{K}/k}(\mathfrak{P})$ be the relative norm map. When $k = 0$ we will instead write $N\mathfrak{B}$.

For $p \in \mathcal{P}_k$, and $\mathfrak{P} \in \mathcal{P}_K$ unramified over p, the Artin symbol K*/*k $\frac{\zeta/k}{\mathfrak{P}}\Big)$ is the unique $\sigma\in\mathcal{G}$ such that for all $x\in\mathcal{K},$ we have

$$
\sigma(x) \equiv x^{N\mathfrak{p}} \mod \mathfrak{P}.
$$

The values of $(\frac{K/k}{\mathfrak{N}})$ $\frac{\zeta/k}{\mathfrak{P}}\Big)$ for all $\mathfrak P$ lying over $\mathfrak p$ are all conjugate. We denote by $\left(\frac{K/k}{n}\right)$ $\binom{1/k}{\mathfrak{p}}$ the conjugacy class of $\left(\frac{K/k}{\mathfrak{P}}\right)$ $\frac{\zeta/k}{\mathfrak{P}}\Big)$ for all \mathfrak{P} lying above p and call $\left(\frac{K/k}{n}\right)$ $\frac{f/k}{\mathfrak{p}}\Big)$ the Frobenius class associated to $\mathfrak{p}.$

In general, when *G* is abelian, $\left(\frac{K/k}{n}\right)$ $\overline{\mathbb{F}}_p^{(k)}\Big)$ is a single element.

The prime p of k completely splits if and only if $\left(\frac{K/k}{p}\right)$ $\left(\frac{1}{\mathfrak{p}}\right)=1.$

Example

Example: Let $k = \mathbb{Q}$ and $K = \mathbb{Q}(\zeta_m)$, where ζ_m is a primitive mth root of unity.

- K is the cyclotomic extension of degree $\varphi(m)$
- $\mathsf{Gal}(K/k)\cong (\mathbb{Z}/m\mathbb{Z})^*$ via $\zeta_m\mapsto \zeta_m^i$
- **•** *p* ramifies in $\mathbb{Q}(\zeta_m)$ iff $p|m$.

Let $\mathfrak P$ be a prime above p. Let $\sigma \in \mathsf{Gal}(K/k)$ satisfy

$$
\sigma(x) \equiv x^p \mod{3}
$$

for all $x \in K$, then we must have $\sigma(\zeta_m^k) \equiv \zeta_m^{kp} \mod \mathfrak{P}$ for all k . Thus, in this case $\left(\frac{K/k}{n}\right)$ $\overline{\overline{\rho}}^{1/k}_{p}\Big) = \overline{p},$ the class of p modulo $m.$

The Chebotarev Density Theorem

For a given conjugacy class C of G and $p \in \mathcal{P}_k$ unramified in K, let

$$
\mathcal{P}_{k,C} := \left\{ \mathfrak{p} \in \mathcal{P}_k \mid \left(\frac{K/k}{\mathfrak{p}} \right) = C \right\}.
$$

The natural density of $P_{k,C}$ is

$$
\mu_{K/k}(C) := \lim_{N \to \infty} \frac{\#\left\{\mathfrak{p} \mid N\mathfrak{p} \leq N, \left(\frac{K/k}{\mathfrak{p}}\right) = C\right\}}{\#\left\{\mathfrak{p} \mid N\mathfrak{p} \leq N\right\}}.
$$

Chebotarev density theorem

With the notation above, we have

$$
\mu_{K/k}(C)=\frac{|C|}{|G|}.
$$

If we again consider cyclotomic extensions, we see the connection between Chebotarev's density theory and Dirichlet's theorem on primes in arithmetic progressions.

Let $k = \mathbb{Q}$ and $K = \mathbb{Q}(\zeta_m)$ with $\text{Gal}(K/k) \cong (\mathbb{Z}/m\mathbb{Z})^*$. In this case Chebotarev's theorem says the density of primes p such that $p\equiv a\mod m$ is $\frac{1}{\varphi(m)}.$

Theorem of Dirichlet

Let m be a positive integer. Then for each integer a with $gcd(a, m) = 1$ the set of prime numbers p with $p \equiv a \mod m$ has density $1/\varphi(m)$.

Let's consider another application of Chebotarev's density theorem.

Fix a number field K/\mathbb{Q} . The ideal class group of K, is the quotient group

$$
Cl_K:=I_K/P_K
$$

where I_K is the group of fractional ideals of \mathcal{O}_K and P_K is the subgroup of principal ideals of \mathcal{O}_K . We call the order of Cl_K the class number of K , denoted h_K .

The class group measures the failure of unique factorization in \mathcal{O}_K .

The Hilbert class field of K, denoted H_K , is the maximal abelian unramified extension of K .

Class field theory gives us an isomorphism $Cl_K \simeq Gal(H_K/K)$ and $[H_K : K] = h_K$.

The isomorphism $Cl_K \to Gal(H_K/K)$ sends a prime p to its associated Frobenius class. In particular, a prime is totally split in H_K/K if and only if it is principal.

The CDT implies totally split primes in H_K/K have density $\frac{1}{|{\sf Gal}(H_K/K)|}=\frac{1}{h_k}$ $\frac{1}{h_k}$.

Set

$$
\pi_C(x,K/k):=\#\left\{\mathfrak{p}\mid \mathfrak{p} \text{ is unramified in }K\ ,\left(\frac{K/k}{\mathfrak{p}}\right)=C,N\mathfrak{p}\leq x\right\}.
$$

The Chebotarev density theorem gives:

$$
\pi_C(x, K/k) \sim \frac{|C|}{|G|} \int_2^x \frac{dt}{\log t} \sim \frac{|C|}{|G|} \frac{x}{\log x} \text{ as } x \to \infty.
$$

Ideally, we could determine effectively a smallest value \tilde{x} for which $\pi_C(x, K/k) > 0$ if $x \geq \tilde{x}$.

It is important to be able to compute a bound on Np below which every conjugacy class is realized as the Frobenius class of some p*.*

Early proofs of the CDT either had error estimates which depended on k and K in unclear ways, or none at all.

Effective Version

An effective version was shown in 1977 (assuming GRH):

Theorem (Lagarias, Odlyzko 1977)

There exists an effectively computable absolute constant $c_0 \geq 0$ such that for any Galois extension K/k with $G = Gal(K/k)$, then for any fixed conjugacy class $C \subseteq G$ and every $x \geq 2$,

$$
\left|\pi_C(x,K/k)-\frac{|C|}{|G|}\int_2^x\frac{dt}{\log t}\right|\leq c_0\left(\frac{|C|}{|G|}x^{1/2}\log(|\Delta_K|x^n)\right).
$$

As a corollary, there exists an effectively computable c_1 such that for every conjugacy class C of G there exists an unramified prime ideal $\mathfrak p$ of k such that $\left(\frac{{K}/{k}}{\mathfrak n}\right)$ $\overline{\binom{2}{\mathfrak{p}}} = \mathcal{C}$ and

$$
N_{k/\mathbb{Q}}(\mathfrak{p}) \leq c_1 (\log |\Delta_K|)^2 (\log \log |\Delta_K|)^4.
$$

Given a finite Galois extension K*/*k with group G and some conjugacy class of $C \subset G$, the Chebotarev density theorem says the frequency of primes of k whose corresponding Frobenius class is equal to C is given by $|C|/|G|$.

We will soon give a refined version of the natural densities which occur in the CDT. From this definition we produce a method to understand a special short exact sequence called the Hilbert short exact sequence.

Let K*/*k be a finite Galois extension of number fields. The Hilbert class field of K, H_K , is Galois over k, and there is a natural restriction map

$$
\pi : \mathsf{Gal}(H_\mathsf{K}/\mathsf{k}) \to \mathsf{Gal}(K/\mathsf{k})
$$

$$
\tau \mapsto \tau|_K
$$

with ker(π) \cong Gal(H_K/K) \cong Cl_K. So, we obtain the Hilbert short exact sequence (HES):

$$
1 \to Cl_K \to \text{Gal}(H_K/k) \xrightarrow{\pi} \text{Gal}(K/k) \to 1.
$$

A group extension $1 \to \mathcal{N} \to \mathcal{E} \xrightarrow{\pi} \mathcal{Q} \to 1$ is split if one of these equivalent conditions hold

- **•** There exists a morphism $s: Q \to E$ such that $\pi \circ s = id_Q$. In this case, we say s splits the extension and call s a splitting.
- E is a semi-direct product of the form $N \rtimes Q$.
- The corresponding class in $H^2(Q, N)$ is trivial.

We are motivated by the question of whether or not the HES:

$$
1 \to \mathit{Cl}_\mathsf{K} \to \mathsf{Gal}(H_\mathsf{K}/k) \xrightarrow{\pi} \mathsf{Gal}(K/k) \to 1
$$

splits. This question has been investigated by several people.

It was originally believed that the HES always split when $k = \mathbb{Q}$. This was shown to be false by Wyman in 1973.

Wyman proved the HES does split when k has class number one and K*/*k is cyclic. In 1977 Gold found another proof of Wyman's result, which was improved by Cornell and Rosen.

In 1988 Cornell and Rosen proved a necessary condition for the splitting of the HES.

In the case when K/k is abelian of odd degree, this necessary condition is equivalent to whether or not the Hasse norm theorem holds for K*.*

Therefore, the result of Cornell and Rosen implies that in the case when $Gal(K/k)$ is not cyclic, it is unlikely that the HES will split.

For a concrete extension K/k , it is difficult to determine if the HES splits because it depends on $H^2(\mathsf{Gal}(K/k),\mathsf{Cl}_K).$

Therefore, one of our main motivations is to determine an algorithm which can check whether or not the HES splits of certain K*/*k*.*

First Main Result

We say a prime $\mathfrak p$ of k principally realizes a conjugacy class $C \subset$ Gal(K/k) if p is unramified in K and

$$
\bullet \ \left(\frac{K/k}{\mathfrak{p}}\right) = C
$$

 \bullet p is a product of principal prime ideals in \mathcal{O}_K

Theorem (Duan, Ma, O., Wang 2021)

Fix a Galois extension K/k . There is an effective bound B_K , such that if any conjugacy class C of Gal(K*/*k) cannot be principally realized by at least one prime p of k with $N_{k/\mathbb{Q}}(\mathfrak{p}) \leq B_K$, then the HES does not split.

In particular, under the assumption of GRH, one can take

$$
B_K = (4h_K \log |\Delta_K| + 2.5 \cdot n \cdot h_K + 5)^2,
$$

where $n = [K : \mathbb{Q}]$, $|\Delta_K|$ is the absolute discriminant of K and h_K is the class number of K*.*

The proof of the above theorem is dependent on a refinement of $\mu_{\mathcal{K}/\mathsf{k}}$, where we consider primes $\mathfrak p$ of $\mathsf k$ which *principally* realize a given conjugacy class.

We define:

$$
\mu^1_{K/k}(C) := \lim_{N \to \infty} \frac{\# \left\{ \mathfrak{p} \in \mathcal{P}_k \mid N\mathfrak{p} \leq N, \ \left(\frac{K/k}{\mathfrak{p}} \right) = C, \mathfrak{P} \text{ is principal} \right\}}{\# \{\mathfrak{p} \in \mathcal{P}_k \mid N\mathfrak{p} \leq N\}}
$$

for every prime ideal $\mathfrak P$ of K lying above p.

Questions:

- Is $\mu^1_{K/k}(\mathcal{C})$ well defined?
- ls $\mu_{K/k}^1(\mathcal{C}) > 0$?
- Is there an explicit formula for $\mu_{K,k}^1(\mathcal{C})$?
- How is $\mu^1_{K/k}(\mathcal{C})$ related to the HES?

For ease in notation, we will write the HES as

$$
1 \to Cl_K \to E \xrightarrow{\pi} G \to 1,
$$

where $E = \text{Gal}(H_K/k)$ and $G = \text{Gal}(K/k)$.

$\mu^1_{\pmb{\mu}}$ $\frac{1}{\mathsf{K}/\mathsf{k}}(\mathsf{C})$ is well defined

Proposition (Duan, Ma, O., Wang 2021)

Let C be a conjugacy class of G and $d_G(C)$ the common order of the elements of $C.$ The density $\mu_{K/k}^1(\mathit{C})$ is well defined and

$$
\mu^1_{K/k}(C) = \frac{|\{\sigma \in E \mid \pi(\sigma) \in C \text{ and } \sigma^{d_G(C)} = id_E\}|}{|E|}.
$$

From this result we see that $\mu^1_{K/k}(C)$ depends on the union of conjugacy classes of E.

To see this, write

$$
E=C_1\sqcup C_2\sqcup\cdots\sqcup C_r.
$$

Assume $\sigma \in C_1$ and check if σ satisfies $\pi(\sigma) \in C$ and $\sigma^{d_{G} (C)} = id_{E}.$ If one $\sigma \in \mathcal{C}_{1}$ satisfies these conditions, all $\sigma \in \mathcal{C}_{1}$ will. So we can write the numerator as a union of conjugacy classes of E*.*

When is μ^1_{μ} $\frac{1}{\mathsf{K}/\mathsf{k}}(\mathsf{C})>0?$

Our next main result describes how the splitting of the HES can determine when $\mu_{K/k}^1(\mathcal{C})>0.$

Proposition (Duan, Ma, O., Wang 2021)

If the Hilbert exact sequence

$$
1 \to \textit{Cl}_\textit{K} \to \textit{E} \xrightarrow{\pi} \textit{G} \to 1
$$

splits, then $\mu_{K/k}^1(\mathcal{C})>0$ for every conjugacy class $\mathcal{C}.$

The main step in the proof of this result is to show that for a fixed $C\subset G$, the density $\mu^1_{K/k}(C)>0$ if and only if there exists an element $g \in C$ such that

$$
1 \to \textit{Cl}_\textit{K} \to \textit{E}_\textit{g} \to \langle \textit{g} \rangle \to 1
$$

splits, where for $g\in G$ we denote by $E_g:=\pi^{-1}(\langle g\rangle)\subset E.$

Therefore, $\mu^1_{K/k}({\mathcal{C}})>0$ for all conjugacy classes if and only if for every maximal cyclic subgroup U of G*,*

$$
1 \to Cl_K \to \pi^{-1}(U) \to U \to 1,
$$

splits.

Running over all maximal cyclic subgroups U of G gives us the result.

Explicit formula

We would like an explicit formula for $\mu_{K/k}^1(\mathcal{C})$ for a fixed conjugacy class C ⊂ G*.*

 $\mathsf{Assume}\,\, \mu^1_{K/k}(\mathsf{C})>0.$ Fix an element $\sigma\in\mathsf{E}$ such that $\pi(\sigma)\in\mathsf{C}$ and $\sigma^{d_G(C)} = \text{id}_E$. Define a group homomorphism

$$
N_\sigma: \mathit{Cl}_K \to \mathit{Cl}_K
$$

by

$$
x\mapsto (x\sigma)^{d_G(C)}.
$$

Lemma (Duan, Ma, O., Wang 2021) With the notations above

$$
\mu_{K/k}^1(C) = \frac{|C|}{|G|} \frac{|\ker(N_\sigma)|}{h_k}
$$

.

Let $g=\pi(\sigma)\in\mathsf{G}$, then $\langle g\rangle$ acts on $\mathsf{K}.$ Call $\mathsf{F}:=\mathsf{K}^{\langle\mathcal{g}\rangle},$ the fixed field of K by $\langle g \rangle$.

There exists an intermediate field $H_K \supset K_F \supset K$ such that K_F is maximal among all such possible intermediate fields which are abelian extensions over F*.*

We call K_F the genus field of K over F and $[K_F : K]$ the genus number of K over F*.*

Recall,

$$
\mu_{K/k}^1(C) = \frac{|C|}{|G|} \frac{|\ker(N_{\sigma})|}{h_k}.
$$

By the theory of Tate cohomology and Galois theory we have

$$
\frac{|\ker(N_{\sigma})|}{h_K}=\frac{|H^1(\langle g\rangle, Cl_K)|}{[K_F:K]}.
$$

Theorem (Duan, Ma, O., Wang 2021)

For every conjugacy class C of G such that $\mu^1_{K/k}(C)>0$, let $\sigma \in \pi^{-1}(g) \subset \mathit{E}_g$ be an element of order $d_G(\mathcal{C})$ for some $g \in \mathcal{C}.$ Then,

$$
\mu_{K,k}^1(C) = \frac{|C|}{|G|} \frac{|H^1(\langle g \rangle, Cl_K)|}{[K_F:K]}.
$$

The case when $C = \{id_G\}$ is of special interest.

If we take $\mathcal{C} = \{ \mathit{id}_G \},$ then $\mu^1_{K/k}(\mathsf{id}_G) = \frac{1}{|G|h_K}$ since in this case we have

\n- $$
H^1(\langle \text{id}_G \rangle, Cl_K) = \text{Hom}(id_G, Cl_K)
$$
 which is trivial
\n- $F = K^{\text{id}_G} = K$ and so $K_F = H_K$.
\n

In other words, the probability of finding a prime ideal of k which splits principally in K is $\frac{1}{|G|h_K}.$

So far:

- \bullet If the HES splits for a Galois extension with group G, then $\mu^1_{K/k}(\mathsf{C})>0$ for every conjugacy class $\mathsf{C}\subset\mathsf{G}.$
- $\mu^1_{K/k}(\mathcal{C})$ is dependent on the union of conjugacy classes of $Gal(H_K/k)$.

Goal: Find a bound such that every conjugacy class of Gal(H_K/k) can be realized as the Frobenius class of at least one prime ideal p of k unramified in H_K .

Theorem (Bach, Sorenson 1996)

Let L/k be a Galois extension of number fields, with $L \neq \mathbb{Q}$. Let Δ_L denote the discriminant of L, and $n = [L : \mathbb{Q}]$. Let $C \subset$ Gal(L/k) be a conjugacy class. Assume GRH. Then there is an unramified prime ideal $\mathfrak p$ of k with $\left(\frac{L/k}{n}\right)$ $\frac{1}{\mathfrak{p}}\Big)=\mathcal{C}$ satisfying

$$
N\mathfrak{p}\leq (4\log|\Delta_L|+2.5n+5)^2.
$$

We are left finding/estimating the degree $[H_K : \mathbb{Q}]$ and the discriminant Δ_{H_K} . Since $[H_K:\mathbb{Q}]=h_K[K:\mathbb{Q}],$ we need only to estimate $\Delta_{H_K}.$

To determine the discriminant, we compute the norm of the different, a fractional ideal in the ring of integers of H_K . In our case, $\Delta_{H_K} = \Delta_K^{h_K}$.

Applying this to the result of Bach & Sorenson with $L = H_K$, we obtain:

Theorem (Duan, Ma, O., Wang 2021)

Let K*/*k be a Galois extension. Assuming GRH, take

$$
B_K = (4h_K \log |\Delta_K| + 2.5 \cdot n \cdot h_K + 5)^2. \tag{1}
$$

Then a conjugacy class $C\subset \mathsf{Gal}(K/k)$ satisfies $\mu^1_{K/k}(C)>0$ if and only if there exists an unramified prime ideal $\mathfrak p$ of k with $Np \leq B_K$, and p principally realizes C.

In particular, if the associated Hilbert exact sequence splits, then every conjugacy class C can be realized as the Frobenius class by at least one prime ideal p as above.

Example: Let $K = \mathbb{Q}(\sqrt{2})$ −3*,* √ 13)*.*

K is Galois over Q with Gal(K*/*Q) ∼= Z*/*2Z × Z*/*2Z

•
$$
Cl_K = \mathbb{Z}/2\mathbb{Z}
$$
 so $h_K = 2$

• It can be checked that $|\Delta_K| = 1521$.

One of the three quadratic subfields of K is $L = \mathbb{Q}(\sqrt{2})$ −3 × 13)*.* In order to show the HES does not split in this case, we need to find a conjugacy class C which can not be principally realized by any unramified prime in Q*.*

Assume σ generates Gal(K/L) and take $C = {\sigma}$ to be the corresponding conjugacy class. Then the sub exact sequence

$$
1 \rightarrow Cl_{\mathsf{K}} \rightarrow \mathsf{E}_{\sigma} \rightarrow \langle \sigma \rangle \rightarrow 1
$$

splits if and only if one can find an unramified prime integer p such that

- p factors principally in K*.*
- p totally split in L; this guarantees that $\left(\frac{K/\mathbb{Q}}{R}\right)$ $\overline{p}^{\prime\left(\mathbb{Q}\right) }$ \in Gal($K/L)$
- p is not totally split in K; this guarantees that $\left(\frac{K/\mathbb{Q}}{R}\right)$ $\frac{\sqrt{\mathbb{Q}}}{p} \Big) \in \mathcal{C}$

By the previous theorem, if such a p exists, it can be found under

$$
B_K = (4h_K \log |\Delta_K| + 2.5 \cdot n \cdot h_K + 5)^2
$$

= $(4 \times 2 \times \log |1521| + 2.5 \times 4 \times 2 + 5)^2 < 6992.$

One can verify with the help of a computer that no such prime integer exists. So, $\mu^1_{K/k}(\sigma)=0$ and the associated HES does not split.

The principal density gives us:

- a method for testing the non-splitting of the HES
- a way of "computing" the class number of a number field

Is there a way to generalize the notion of the principal density?

For any unramified p in k lying below a prime $\mathfrak P$ in K we can define the K*/*k-principal order of p to be the smallest positive integer $n_{K/k, \mathfrak{p}}$ such that $\mathfrak{P}^{n_{K/k, \mathfrak{p}}}$ is principal in $K.$

We can now consider the following density for every positive integer m:

$$
\mu_{K/k}^m(C) := \lim_{N \to \infty} \frac{\#\left\{\mathfrak{p} \in \mathcal{P}_k \mid N\mathfrak{p} \leq N, \ \left(\frac{K/k}{\mathfrak{p}}\right) = C, n_{K/k, \mathfrak{p}} | m\right\}}{\#\{\mathfrak{p} \in \mathcal{P}_k \mid N\mathfrak{p} \leq N\}}.
$$

For each positive integer m we can also define

$$
\theta^m_{K/k}(C) := \lim_{N \to \infty} \frac{\#\left\{\mathfrak{p} \in \mathcal{P}_k \mid N\mathfrak{p} \leq N, \ \left(\frac{K/k}{\mathfrak{p}}\right) = C, n_{K/k, \mathfrak{p}} = m\right\}}{\#\{\mathfrak{p} \in \mathcal{P}_k \mid N\mathfrak{p} \leq N\}}.
$$

Lemma (Duan, Ma, O., Wang 2021)

Let K/k be a Galois extension of number fields with $G = Gal(K/k)$.

- For every conjugacy class $C \subset G$ and every positive integer m, the density $\mu_{K/k}^m(\mathcal{C})$ is well defined.
- $\mu^m_{K/k}(\mathcal{C})>0$ for all conjugacy classes if and only if for every maximal cyclic subgroup U of G there exists a divisor i_U of m such that

$1\rightarrow \left.CI_{\mathsf{K}}/Cl_{\mathsf{K}}^0[i_U]\rightarrow \pi^{-1}(U)/\left.C\right|_{\mathsf{K}}^0[i_U]\rightarrow U\rightarrow 1$

exists and splits, where ${\it Cl}_K^0[n]$ denotes the subgroup of ${\it Cl}_K$ generated by the elements of order exactly n*.*

Explicit formula

We define a homomorphism $N_{\sigma,m}$ as before. Since there is an element σ such that $\sigma^{d_G(\mathcal{C})} = id_E$ we have

$$
N_{\sigma,m}=(N_{\sigma,1})^m: x\mapsto (N_{\sigma,1}(x))^m.
$$

Then

$$
\mu_{K/k}^m(C)=\frac{|C||\ker(N_{\sigma},m)|}{|G|h_K}.
$$

Since

$$
\ker(N_{\sigma,m})/\ker(N_{\sigma,1})=(\mathit{Cl}_K/\ker(\mathrm{N}_{\sigma,1}))[m],
$$

we obtain the following result:

Corollary (Duan, Ma, O., Wang 2021) With all the notations above, if $\mu_{K/k}^1(\mathcal{C})>0,$ we have

$$
\mu_{K/k}^m(C) = \frac{|C|}{|G|} \frac{|H^1(\langle \sigma \rangle, Cl_K)|}{[K_F:K]} |(Cl_K/\ker(\mathrm{N}_{\sigma,1}))[m]|.
$$

Take $C = \{id_G\}$, in this case we have

$$
\ker(N_{\mathsf{id}_E,m})=\{x\in\mathit{Cl}_K\mid x^m=\mathsf{id}_E\}=\mathit{Cl}_K[m].
$$

Corollary (Duan, Ma, O., Wang 2021)

Taking $C = \{id_G\}$ to be the trivial conjugacy class in G, for every prime integer p and every positive integer r , we have

$$
\frac{\mu_{K/k}^{p'}(\{\mathsf{id}_{G}\})}{\mu_{K/k}^{p'^{-1}}(\{\mathsf{id}_{G}\})} = \frac{|Cl_{K}[p']|}{|Cl_{K}[p^{r-1}]|}.
$$

This results tells us that one can see the structure of Cl_K by the densities $\mu^m_{K/k}(\{\mathsf{id}_G\})$ as m varies!

Thank you!