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Motivation

At the time of Gauss, it was already noticed that there are the
“same number” of prime integers which satisfy p ≡ 1 mod 4 and
those which satisfy p ≡ 3 mod 4.

This implies that as one considers larger and larger primes, the
frequency of primes that completely split and those which are inert
in Z[i ] approaches 1/2.
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Set-up

Let K/k be a finite Galois extension of number fields, with Galois
group G = Gal(K/k). Denote by PK the set of prime ideals of the
ring of integers OK . For a prime ideal P ∈ PK , let NK/k(P) be
the relative norm map. When k = Q we will instead write NP.

For p ∈ Pk , and P ∈ PK unramified over p, the Artin symbol(
K/k
P

)
is the unique σ ∈ G such that for all x ∈ K , we have

σ(x) ≡ xNp mod P.
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Frobenius classes

The values of
(

K/k
P

)
for all P lying over p are all conjugate. We

denote by
(

K/k
p

)
the conjugacy class of

(
K/k
P

)
for all P lying

above p and call
(

K/k
p

)
the Frobenius class associated to p.

In general, when G is abelian,
(

K/k
p

)
is a single element.

The prime p of k completely splits if and only if
(

K/k
p

)
= 1.

5 / 43



Example

Example: Let k = Q and K = Q(ζm), where ζm is a primitive mth
root of unity.

K is the cyclotomic extension of degree φ(m)
Gal(K/k) ∼= (Z/mZ)∗ via ζm 7→ ζ i

m

p ramifies in Q(ζm) iff p|m.

Let P be a prime above p. Let σ ∈ Gal(K/k) satisfy

σ(x) ≡ xp mod P

for all x ∈ K , then we must have σ(ζk
m) ≡ ζkp

m mod P for all k.

Thus, in this case
(

K/k
p

)
= p, the class of p modulo m.
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The Chebotarev Density Theorem

For a given conjugacy class C of G and p ∈ Pk unramified in K , let

Pk,C :=
{
p ∈ Pk |

(K/k
p

)
= C

}
.

The natural density of Pk,C is

µK/k(C) := lim
N→∞

#
{
p | Np ≤ N,

(
K/k
p

)
= C

}
# {p | Np ≤ N}

.

Chebotarev density theorem
With the notation above, we have

µK/k(C) = |C |
|G |

.
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Applications of CDT

If we again consider cyclotomic extensions, we see the connection
between Chebotarev’s density theory and Dirichlet’s theorem on
primes in arithmetic progressions.

Let k = Q and K = Q(ζm) with Gal(K/k) ∼= (Z/mZ)∗. In this
case Chebotarev’s theorem says the density of primes p such that
p ≡ a mod m is 1

φ(m) .

Theorem of Dirichlet
Let m be a positive integer. Then for each integer a with
gcd(a, m) = 1 the set of prime numbers p with p ≡ a mod m has
density 1/φ(m).
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Applications of CDT

Let’s consider another application of Chebotarev’s density theorem.

Fix a number field K/Q. The ideal class group of K , is the
quotient group

ClK := IK /PK

where IK is the group of fractional ideals of OK and PK is the
subgroup of principal ideals of OK . We call the order of ClK the
class number of K , denoted hK .

The class group measures the failure of unique factorization in OK .
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Applications of CDT

The Hilbert class field of K , denoted HK , is the maximal abelian
unramified extension of K .

Class field theory gives us an isomorphism ClK ≃ Gal(HK /K ) and
[HK : K ] = hK .

The isomorphism ClK → Gal(HK /K ) sends a prime p to its
associated Frobenius class. In particular, a prime is totally split in
HK /K if and only if it is principal.

The CDT implies totally split primes in HK /K have density
1

|Gal(HK /K)| = 1
hk

.
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Effective Version

Set

πC (x , K/k) := #
{
p | p is unramified in K ,

(K/k
p

)
= C , Np ≤ x

}
.

The Chebotarev density theorem gives:

πC (x , K/k) ∼ |C |
|G |

∫ x

2

dt
log t ∼ |C |

|G |
x

log x as x → ∞.
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Effective Version

Ideally, we could determine effectively a smallest value x̃ for which
πC (x , K/k) > 0 if x ≥ x̃ .

It is important to be able to compute a bound on Np below which
every conjugacy class is realized as the Frobenius class of some p.

Early proofs of the CDT either had error estimates which depended
on k and K in unclear ways, or none at all.
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Effective Version

An effective version was shown in 1977 (assuming GRH):

Theorem (Lagarias, Odlyzko 1977)
There exists an effectively computable absolute constant c0 ≥ 0
such that for any Galois extension K/k with G = Gal(K/k), then
for any fixed conjugacy class C ⊆ G and every x ≥ 2,

∣∣∣∣πC (x , K/k) − |C |
|G |

∫ x

2

dt
log t

∣∣∣∣ ≤ c0

( |C |
|G |

x1/2 log(|∆K |xn)
)

.

As a corollary, there exists an effectively computable c1 such that
for every conjugacy class C of G there exists an unramified prime
ideal p of k such that

(
K/k
p

)
= C and

Nk/Q(p) ≤ c1(log |∆K |)2(log log |∆K |)4.
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The Chebotarev Density Theorem

Given a finite Galois extension K/k with group G and some
conjugacy class of C ⊂ G , the Chebotarev density theorem says
the frequency of primes of k whose corresponding Frobenius class
is equal to C is given by |C |/|G |.

We will soon give a refined version of the natural densities which
occur in the CDT. From this definition we produce a method to
understand a special short exact sequence called the Hilbert short
exact sequence.
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Hilbert Exact Sequence

Let K/k be a finite Galois extension of number fields. The Hilbert
class field of K , HK , is Galois over k, and there is a natural
restriction map

π : Gal(HK /k) → Gal(K/k)

τ 7→ τ |K
with ker(π) ∼= Gal(HK /K ) ∼= ClK . So, we obtain the Hilbert short
exact sequence (HES):

1 → ClK → Gal(HK /k) π−→ Gal(K/k) → 1.
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Split extensions

A group extension 1 → N −→ E π−→ Q → 1 is split if one of these
equivalent conditions hold

There exists a morphism s : Q → E such that π ◦ s = idQ. In
this case, we say s splits the extension and call s a splitting.
E is a semi-direct product of the form N ⋊ Q.

The corresponding class in H2(Q, N) is trivial.
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Splitting of the HES

We are motivated by the question of whether or not the HES:

1 → ClK → Gal(HK /k) π−→ Gal(K/k) → 1

splits. This question has been investigated by several people.

It was originally believed that the HES always split when k = Q.
This was shown to be false by Wyman in 1973.

Wyman proved the HES does split when k has class number one
and K/k is cyclic. In 1977 Gold found another proof of Wyman’s
result, which was improved by Cornell and Rosen.
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Splitting of the HES

In 1988 Cornell and Rosen proved a necessary condition for the
splitting of the HES.

In the case when K/k is abelian of odd degree, this necessary
condition is equivalent to whether or not the Hasse norm theorem
holds for K .

Therefore, the result of Cornell and Rosen implies that in the case
when Gal(K/k) is not cyclic, it is unlikely that the HES will split.
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Splitting of the HES

For a concrete extension K/k, it is difficult to determine if the
HES splits because it depends on H2(Gal(K/k), ClK ).

Therefore, one of our main motivations is to determine an
algorithm which can check whether or not the HES splits of certain
K/k.
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First Main Result
We say a prime p of k principally realizes a conjugacy class
C ⊂ Gal(K/k) if p is unramified in K and(

K/k
p

)
= C

p is a product of principal prime ideals in OK

Theorem (Duan, Ma, O., Wang 2021)
Fix a Galois extension K/k. There is an effective bound BK , such
that if any conjugacy class C of Gal(K/k) cannot be principally
realized by at least one prime p of k with Nk/Q(p) ≤ BK , then the
HES does not split.

In particular, under the assumption of GRH, one can take

BK = (4hK log |∆K | + 2.5 · n · hK + 5)2,

where n = [K : Q], |∆K | is the absolute discriminant of K and hK
is the class number of K .
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Principal Density

The proof of the above theorem is dependent on a refinement of
µK/k , where we consider primes p of k which principally realize a
given conjugacy class.

We define:

µ1
K/k(C) := lim

N→∞

#
{
p ∈ Pk | Np ≤ N,

(
K/k
p

)
= C ,P is principal

}
#{p ∈ Pk | Np ≤ N}

for every prime ideal P of K lying above p.
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Questions about µ1
K/k(C)

Questions:
Is µ1

K/k(C) well defined?
Is µ1

K/k(C) > 0 ?
Is there an explicit formula for µ1

K ,k(C)?
How is µ1

K/k(C) related to the HES?

For ease in notation, we will write the HES as

1 → ClK → E π−→ G → 1,

where E = Gal(HK /k) and G = Gal(K/k).
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µ1
K/k(C) is well defined

Proposition (Duan, Ma, O., Wang 2021)
Let C be a conjugacy class of G and dG(C) the common order of
the elements of C . The density µ1

K/k(C) is well defined and

µ1
K/k(C) = |{σ ∈ E | π(σ) ∈ C and σdG (C) = idE }|

|E |
.

From this result we see that µ1
K/k(C) depends on the union of

conjugacy classes of E .

To see this, write

E = C1 ⊔ C2 ⊔ · · · ⊔ Cr .

Assume σ ∈ C1 and check if σ satisfies π(σ) ∈ C and
σdG (C) = idE . If one σ ∈ C1 satisfies these conditions, all σ ∈ C1
will. So we can write the numerator as a union of conjugacy
classes of E .
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When is µ1
K/k(C) > 0?

Our next main result describes how the splitting of the HES can
determine when µ1

K/k(C) > 0.

Proposition (Duan, Ma, O., Wang 2021)
If the Hilbert exact sequence

1 → ClK → E π−→ G → 1

splits, then µ1
K/k(C) > 0 for every conjugacy class C .

The main step in the proof of this result is to show that for a fixed
C ⊂ G , the density µ1

K/k(C) > 0 if and only if there exists an
element g ∈ C such that

1 → ClK → Eg → ⟨g⟩ → 1

splits, where for g ∈ G we denote by Eg := π−1(⟨g⟩) ⊂ E .
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When is µ1
K/k(C) > 0?

Therefore, µ1
K/k(C) > 0 for all conjugacy classes if and only if for

every maximal cyclic subgroup U of G ,

1 → ClK → π−1(U) → U → 1,

splits.

Running over all maximal cyclic subgroups U of G gives us the
result.
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Explicit formula

We would like an explicit formula for µ1
K/k(C) for a fixed

conjugacy class C ⊂ G .

Assume µ1
K/k(C) > 0. Fix an element σ ∈ E such that π(σ) ∈ C

and σdG (C) = idE . Define a group homomorphism

Nσ : ClK → ClK

by
x 7→ (xσ)dG (C).

Lemma (Duan, Ma, O., Wang 2021)
With the notations above

µ1
K/k(C) = |C |

|G |
| ker(Nσ)|

hk
.
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Genus field

Let g = π(σ) ∈ G , then ⟨g⟩ acts on K . Call F := K ⟨g⟩, the fixed
field of K by ⟨g⟩.

There exists an intermediate field HK ⊃ KF ⊃ K such that KF is
maximal among all such possible intermediate fields which are
abelian extensions over F .

We call KF the genus field of K over F and [KF : K ] the genus
number of K over F .
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Explicit formula

Recall,
µ1

K/k(C) = |C |
|G |

| ker(Nσ)|
hk

.

By the theory of Tate cohomology and Galois theory we have

| ker(Nσ)|
hK

= |H1(⟨g⟩, ClK )|
[KF : K ] .
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Explicit formula

Theorem (Duan, Ma, O., Wang 2021)
For every conjugacy class C of G such that µ1

K/k(C) > 0, let
σ ∈ π−1(g) ⊂ Eg be an element of order dG(C) for some g ∈ C .
Then,

µ1
K ,k(C) = |C |

|G |
|H1(⟨g⟩, ClK )|

[KF : K ] .

The case when C = {idG} is of special interest.
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A special case

If we take C = {idG}, then µ1
K/k(idG) = 1

|G|hK
since in this case we

have
H1(⟨idG⟩, ClK ) = Hom(idG , ClK ) which is trivial
F = K idG = K and so KF = HK .

In other words, the probability of finding a prime ideal of k which
splits principally in K is 1

|G|hK
.
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Effective Method

So far:
If the HES splits for a Galois extension with group G , then
µ1

K/k(C) > 0 for every conjugacy class C ⊂ G .

µ1
K/k(C) is dependent on the union of conjugacy classes of

Gal(HK /k).

Goal: Find a bound such that every conjugacy class of Gal(HK /k)
can be realized as the Frobenius class of at least one prime ideal p
of k unramified in HK .
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Effective Method

Theorem (Bach, Sorenson 1996)
Let L/k be a Galois extension of number fields, with L ̸= Q. Let
∆L denote the discriminant of L, and n = [L : Q]. Let
C ⊂ Gal(L/k) be a conjugacy class. Assume GRH. Then there is
an unramified prime ideal p of k with

(
L/k
p

)
= C satisfying

Np ≤ (4 log |∆L| + 2.5n + 5)2.

We are left finding/estimating the degree [HK : Q] and the
discriminant ∆HK . Since [HK : Q] = hK [K : Q], we need only to
estimate ∆HK .
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Effective Method

To determine the discriminant, we compute the norm of the
different, a fractional ideal in the ring of integers of HK . In our
case, ∆HK = ∆hK

K .

Applying this to the result of Bach & Sorenson with L = HK , we
obtain:

Theorem (Duan, Ma, O., Wang 2021)
Let K/k be a Galois extension. Assuming GRH, take

BK = (4hK log |∆K | + 2.5 · n · hK + 5)2. (1)

Then a conjugacy class C ⊂ Gal(K/k) satisfies µ1
K/k(C) > 0 if

and only if there exists an unramified prime ideal p of k with
Np ≤ BK , and p principally realizes C .
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Testing the non-splitting of a HES

In particular, if the associated Hilbert exact sequence splits, then
every conjugacy class C can be realized as the Frobenius class by
at least one prime ideal p as above.

Example: Let K = Q(
√

−3,
√

13).
K is Galois over Q with Gal(K/Q) ∼= Z/2Z × Z/2Z
ClK = Z/2Z so hK = 2
It can be checked that |∆K | = 1521.

One of the three quadratic subfields of K is L = Q(
√

−3 × 13). In
order to show the HES does not split in this case, we need to find
a conjugacy class C which can not be principally realized by any
unramified prime in Q.
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Testing the non-splitting of a HES

Assume σ generates Gal(K/L) and take C = {σ} to be the
corresponding conjugacy class. Then the sub exact sequence

1 → ClK → Eσ → ⟨σ⟩ → 1

splits if and only if one can find an unramified prime integer p such
that

p factors principally in K .

p totally split in L; this guarantees that
(

K/Q
p

)
∈ Gal(K/L)

p is not totally split in K ; this guarantees that
(

K/Q
p

)
∈ C
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Testing the non-splitting of a HES

By the previous theorem, if such a p exists, it can be found under

BK = (4hK log |∆K | + 2.5 · n · hK + 5)2

= (4 × 2 × log |1521| + 2.5 × 4 × 2 + 5)2 < 6992.

One can verify with the help of a computer that no such prime
integer exists. So, µ1

K/k(σ) = 0 and the associated HES does not
split.
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Principal density

The principal density gives us:

a method for testing the non-splitting of the HES
a way of ”computing” the class number of a number field

Is there a way to generalize the notion of the principal density?
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A Generalized Version

For any unramified p in k lying below a prime P in K we can
define the K/k-principal order of p to be the smallest positive
integer nK/k,p such that PnK/k,p is principal in K .
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A Generalized Version

We can now consider the following density for every positive
integer m:

µm
K/k(C) := lim

N→∞

#
{
p ∈ Pk | Np ≤ N,

(
K/k
p

)
= C , nK/k,p|m

}
#{p ∈ Pk | Np ≤ N}

.

For each positive integer m we can also define

θm
K/k(C) := lim

N→∞

#
{
p ∈ Pk | Np ≤ N,

(
K/k
p

)
= C , nK/k,p = m

}
#{p ∈ Pk | Np ≤ N}

.
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Facts about µm
K/k

Lemma (Duan, Ma, O., Wang 2021)
Let K/k be a Galois extension of number fields with
G = Gal(K/k).

For every conjugacy class C ⊂ G and every positive integer m,
the density µm

K/k(C) is well defined.
µm

K/k(C) > 0 for all conjugacy classes if and only if for every
maximal cyclic subgroup U of G there exists a divisor iU of m
such that

1 → ClK /Cl0
K [iU ] → π−1(U)/Cl0

K [iU ] → U → 1

exists and splits, where Cl0
K [n] denotes the subgroup of ClK

generated by the elements of order exactly n.

40 / 43



Explicit formula
We define a homomorphism Nσ,m as before. Since there is an
element σ such that σdG (C) = idE we have

Nσ,m = (Nσ,1)m : x 7→ (Nσ,1(x))m.

Then
µm

K/k(C) = |C || ker(Nσ, m)|
|G |hK

.

Since
ker(Nσ,m)/ ker(Nσ,1) = (ClK / ker(Nσ,1))[m],

we obtain the following result:

Corollary (Duan, Ma, O., Wang 2021)
With all the notations above, if µ1

K/k(C) > 0, we have

µm
K/k(C) = |C |

|G |
|H1(⟨σ⟩, ClK )|

[KF : K ] |(ClK / ker(Nσ,1))[m]|.
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A special case

Take C = {idG}, in this case we have

ker(NidE ,m) = {x ∈ ClK | xm = idE } = ClK [m].

Corollary (Duan, Ma, O., Wang 2021)
Taking C = {idG} to be the trivial conjugacy class in G , for every
prime integer p and every positive integer r , we have

µpr

K/k({idG})

µpr−1

K/k ({idG})
= |ClK [pr ]|

|ClK [pr−1]| .

This results tells us that one can see the structure of ClK by the
densities µm

K/k({idG}) as m varies!
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Thank you!
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