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Return time sets

Let (X , µ,T ) be a invertible probability preserving transformation

(ippt) and U ⇢ X be a set of positive measure. Let

N(U,U) := {n 2 Z : µ(T�n(U) \ U) > 0}.

Sets of this form are called return time sets.

Can any subset of the integers be a return time set?

No.
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Poincaré Recurrence Theorem: Return time sets have
bounded gaps

N(U,U) := {n 2 Z : µ(T�n(U) \ U) > 0}.
A set S ⇢ N has bounded gaps

if there is n 2 N such that for all

m 2 Z,

[m,m+ n] \ S 6= ∆.

Theorem (Poincaré Recurrence Theorem)

Return time sets have bounded gaps.

Take n 2 N such that

µ(
•[

k=�•
T�k(U))� µ(

n[

k=�n

T�k(U)) < 1/2µ(U).
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Reminder: Return time sets and sets of positive density

Given a set S ⇢ N, its upper density is given by

d(S) := lim sup
n!•

S \ [1, n]
n

.

Given a set S of positive upper density, there is an

N(U,U) ⇢ S � S .

Further by the ergodic theorem we have that there is set of

positive upper density P ⇢ N such that

P � P ⇢ N(U,U).

Thus studying return time sets is the same as studying di↵erence

sets of sets of positive upper density.
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How did I get interested?

Such sets were studied to give an ergodic theoretic proof of

Szemeredi’s theorem. [Furstenberg, 1976 ]

If S is a return time set then given any zero-entropy process

Xi ; i 2 Z, X0 can be predicted by Xi ; i 2 S . [C. , Weiss, 2019]

Here is an explicit question which arose out of our work and we

could not answer.

Question (C. , Weiss, 2019)

Does every return time set S contain a return time set arising from
a zero entropy process?
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N(U,U) := {n 2 Z : µ(T�n(U) \ U) > 0}.

What kind of sets are return-time sets?
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Measure Recurrent Sets

N(U,U) := {n 2 Z : µ(T�n(U) \ U) > 0} - return time sets

So far we have known that return time sets must have bounded

gaps.

A good way of studying a set of a particular type is to study its

*— A set S ⇢ N is called a measure recurrent set if it intersects

every return time set, that is,

S \N(U,U) 6= ∆ for all N(U,U)0s.

These are also called Poincaré sets.
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Even numbers, Return time sets are measure recurrent sets

S \N(U,U) 6= ∆ for all N(U,U)0s. -measure recurrent set

If (X , µ,T ) is a ippt then so is (X , µ,T 2) is also a ippt. Thus

there exists, by Poincaré recurrence theorem, some 2n 2 2N such

that µ(T�2n(U) \ U) > 0. So the set of even integers is a

measure recurrent set.

More generally, given another ippt (Y , n, S) and V ⇢ Y of

positive measure, we have that

NT (U,U) \NS (V ,V ) = NT⇥S (U ⇥ V ,U ⇥ V )

for all NT (U,U). Thus all return times sets are measure recurrent

sets.
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Odd numbers are not measure recurrent sets

S \N(U,U) 6= ∆ for all N(U,U)0s. -measure recurrent set

However the odd numbers 2N + 1 are not measure recurrent set:

Let µ be the uniform probability measure on {0, 1} and let

T : {0, 1} ! {0, 1} be given by T (i) = i + 1 mod 2. Then for

U := {0}, we have that N(U,U) = 2Z.
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The di↵erence set of infinite sets are measure recurrent

Let S ⇢ N be any infinite set. Then (S � S) \ N is a measure

recurrent set.

To see why this is true, let (X , µ,T ) be a ppt and U ⇢ X be of

positive measure. Since µ(X ) = 1 and S is infinite there must

exist distinct s, s 0 2 S such that µ(T s(U) \ T s 0(U)) > 0. Thus

|s � s 0| 2 N(U,U) and that (S � S) \ N is a measure recurrent

set.
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The squares are measure recurrent sets
(Sarkozy-Furstenberg theorem)

Theorem (Sarkozy-Furstenberg theorem)

The squares are measure recurrent sets.

Let (X , µ,T ) be a ppt and U ⇢ X have positive measure. We

want to show that µ(U \ T�n2(U)) > 0 for some n 2 N.
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The squares are measure recurrent sets
(Sarkozy-Furstenberg theorem)

Let (X , µ,T ) be a ppt and U ⇢ X have positive measure. We want to show that

µ(U \T�n2 (U)) > 0 for some n 2 N.

We will need the spectral representation: There is a finite non-negative measure nU on

R/Z such that nU ({0}) = µ(U)2 and

exp(2pint) ! 1Tn(U) gives an isometeric embedding from L2(nU ) ! L2(µ).

We will also need the following result of Weyl: For all irrational t 2 R/Z

lim
k!•

1

N

N

Â
k=1

exp(�2pik2t) = 0.

Thus if nrat is component of nU supported on rational points we have for all m 2 N

lim inf
N!•

1

N

N

Â
k=1

µ(U \T�k2m2
(U)) = lim inf

N!•

*
1

N

N

Â
k=1

1
T�k2m2

(U)
, 1U

+
= lim inf

N!•

Z
1

N

N

Â
k=1

exp(�2pim2k2t)dnU (t)

= lim inf
N!•

Z
1

N

N

Â
k=1

exp(�2pim2k2t)dnrat (t).
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The squares are measure recurrent sets
(Sarkozy-Furstenberg theorem)

Let (X , µ,T ) be a ppt and U ⇢ X have positive measure. We

want to show that µ(U \ T�n2(U)) > 0 for some n 2 N.

We had

lim inf
N!•

1

N

N

Â
k=1

µ(U \T�k2m2
(U)) = lim inf

N!•

Z
1

N

N

Â
k=1

exp(�2pim2k2t)dnrat (t)

where nrat is a non-negative measure supported on rational points of

R/Z.

Pick m such that mt = 0 mod 1 for all t except nrat measure e. Then

| lim inf
N!•

1

N

N

Â
k=1

µ(U \T�k2m2
(U))� nrat (R/Z)| < e.

Recall nU ({0}) = nrat({0}) = µ(U)2 > 0. Since e can be made

arbitrarily small there exists k 2 N such that

µ(U \ T�k2m2

(U)) > 0.
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where nrat is a non-negative measure supported on rational points of

R/Z.

Pick m such that mt = 0 mod 1 for all t except nrat measure e. Then

| lim inf
N!•

1

N

N

Â
k=1

µ(U \T�k2m2
(U))� nrat (R/Z)| < e.

Recall nU ({0}) = nrat({0}) = µ(U)2 > 0. Since e can be made

arbitrarily small there exists k 2 N such that

µ(U \ T�k2m2

(U)) > 0.
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Intersective polynomials

Thus we have shown that the squares are measure recurrent sets

(Sarkozy-Furstenberg theorem).

This proof was given by Furstenberg. He, in fact, showed that if p
is a polynomial with rational coe�cients such that p(N) ⇢ N

then p(N) is a measure recurrent set if and only if p has a root

modulo n for all n.

Such polynomials are called intersective polynomials.
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Return time sets: Summary

N(U,U) := {n 2 Z : µ(T�n(U) \ U) > 0} - return time sets

Return time sets have bounded gaps.

Return time sets must contain a square.

For all infinite sets S , it must contain an element of

(S � S) \ N.

But could they possibly be even more special?
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Wiener’s lemma

We will need the following consequence of Wiener’s lemma.

Theorem

Let n be a continuous non-negative finite measure on R/Z. Then
for all e > 0,

{n 2 Z : |n̂(n)| > e}

has zero density.
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Return time sets and rotations of a torus

Let (X , µ,T ) be a ppt and U ⇢ X have positive measure.

Recall: There is a finite non-negative measure nU on R/Z such

that

exp(2pint) ! 1Tn(U) gives an isometeric embedding from L2(nU ) ! L2(µ).

We have thus µ(T�n(U) \ U) = n̂U (n).

There exists ai � 0 and ti 2 R/Z such that

nU = µ(U)2d0 +
•

Â
k=1

akdtk + ncon

where ncon is a continuous component of nU . Thus

µ(T�n(U) \ U) = n̂U (n) = µ(U)2 +
•

Â
k=1

ak exp(�2pintk ) + n̂con(n).
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Return time sets and rotations of a torus

Let e < 1

3
µ(U)2. We had

µ(T�n(U)\U) = n̂U(n) = µ(U)2+
•

Â
k=1

ak exp(�2pintk)+ n̂con(n).

Pick M large enough such that Âk>M ak < e. Let

P 0 :=

(
n 2 Z : |

M

Â
k=1

ak exp(�2pintk)�
M

Â
k=1

ak | < e

)
.

There exists d > 0

P := {n 2 Z : |ntk | < d for all 1  k  M} ⇢ P 0
.

Let

Q := {n 2 Z : |n̂con(n)| > e} .
We must have that

P \Q ⇢ N(U,U).
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Let e < 1

3
µ(U)2. We had

µ(T�n(U)\U) = n̂U(n) = µ(U)2+
•

Â
k=1

ak exp(�2pintk)+ n̂con(n).

Pick M large enough such that Âk>M ak < e. Let

P 0 :=

(
n 2 Z : |

M

Â
k=1

ak exp(�2pintk)�
M

Â
k=1

ak | < e

)
.

There exists d > 0

P := {n 2 Z : |ntk | < d for all 1  k  M} ⇢ P 0
.

Let

Q := {n 2 Z : |n̂con(n)| > e} .
We must have that

P \Q ⇢ N(U,U).
53 / 96



Return time sets and rotations of a torus

We had

P := {n 2 Z : |nti | < d for all 1  i  M} .

and

Q := {n 2 Z : |n̂con(n)| > e} .

and

P \Q ⇢ N(U,U).

By Wiener’s lemma it follows that Q must have zero density.
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Return time sets and rotations of a torus

We have that

P \Q ⇢ N(U,U)

where Q has density zero and there is a 2 (R/Z)M and

P = {n 2 Z : |na| < d}.

Such sets P are called Bohr neighbourhoods of 0.

We have proved a result which goes back to Bogolyubov (1939),

Følner (1954) and Veech (1968):

Theorem

Every N(U,U) set contains a Bohr neighbourhood of 0 barring a
set of density zero.
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Bohr topology

Let a 2 (R/Z)M and V ⇢ (R/Z)M be an open set. Let

Na(0,V ) := {n 2 Z : na 2 V }.

The Bohr topology (named after Harald Bohr) is a topology

generated by sets of the type Na(0,V ).

Note that if 0 2 V and U is an open set such that U � U ⇢ V
then we have that for µ being the Lebesgue measure on (R/Z)M

Na(U,U) := {n 2 Z : µ((na + U) \ U) > 0} ⇢ Na(0,V ).

So, Bohr neighbourhoods of 0 are return time sets for rotations of

the torus (in fact of any compact abelian group).
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Bohr topology- Why do I care?

I care about return time sets and they are return times sets with a

very concrete description.

It is the topology induced by the compatification of Z given by the

Pontryagin dual \(R/Z)d , the dual of the circle with the discrete

topology.

Theorem (Meyer, 1968)

If P ⇢ N is a Bohr closed set and µ is a measure on the circle
such that µ̂(n) = 0 for n 2 N \ P then µ is absolutely continuous.

Such sets P have a deep relationship with prediction of zero

entropy processes and go by the name Riesz sets. It is known that

the squares are Bohr closed and hence are Riesz sets.

The cubes on the other hand are not a closed set and it is a wide open problem

whether they are Riesz sets.
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Return time sets and Bohr neighbourhoods

Theorem (Bogolyubov-Følner)

Every return time set contains a Bohr neighbourhood of 0 barring
a set of density zero.

Question

Does every return time set contain a Bohr neighbourhood of 0?

No!

Theorem (Kř́ıž, 1968)

There exists a return time set which does not contain a Bohr
neighbourhood of 0.
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Return time sets and Bohr neighbourhoods

Even further is true.

Theorem (Griesmer, 2020)

There exists a return time set which does not contain any Bohr
open set.
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Bohr recurrent sets

Recall that a set S ⇢ N is called measure recurrent if it intersects

every return time set, that is, a set of the type N(U,U).

A set S ⇢ N is called Bohr recurrent set if it intersects every Bohr

neighbourhood of zero, that is, a set of the type Na(U,U).

If a set is measure recurrent then it is Bohr recurrent. By Kř́ıž’s

theorem the converse is not true.

Thus we have that the following sets are measure recurrent and

hence Bohr recurrent:

For an infinite set S , the set (S � S) \ N.

The squares, the cubes . . . .

71 / 96



Bohr recurrent sets

Recall that a set S ⇢ N is called measure recurrent if it intersects

every return time set, that is, a set of the type N(U,U).

A set S ⇢ N is called Bohr recurrent set if it intersects every Bohr

neighbourhood of zero, that is, a set of the type Na(U,U).

If a set is measure recurrent then it is Bohr recurrent. By Kř́ıž’s
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Bohr recurrent sets

Let r > 1. A set of natural numbers {li : i 2 N} is called

lacunary if li+1/li > r.

The following was proved by Pollington (1979), de Mathan (1981)

and Katznelson (1999).

Theorem

Lacunary sets are not Bohr recurrent set.

They were all answering di↵erent question raised by Erdös. We will

concentrate on Katznelson’s version of the answer.

For any growth rate slower than exponential there are examples of

sets which are Bohr recurrent by Ajtai, Havas and Komlós (1983).
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Lacunary sets are not Bohr recurrent

Theorem

Lacunary sets are not Bohr recurrent sets.

Let r > 1. Fix a lacunary set {li : i 2 N} such that

li+1/li > r. We want to find a 2 (R/Z)d and e > 0 such that

|lia| > e for all i 2 N.

Suppose r > 5. Let

Ai := {a 2 R/Z : |lia| � 1/4}

:= {k/li : 1  k  li}+


1

4li
,

3

4li

�

is a union of intervals of length
1

2li
. Since li+1/li > 5 we have

that each such interval must contain at least two li+1 roots of

unity. Thus \Ai is non empty.
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Lacunary sets are not Bohr recurrent

Theorem

Lacunary sets are not Bohr recurrent sets.

We have shown that if r > 5 then there exists a 2 R/Z such that

|lia| � 1/4 for all i .

For general r > 1, find d such that rd > 5. Then li+kd ; k 2 N is

lacunary for all i and there exists ai 2 R/Z such that

|li+kdai | � 1/4 for all k 2 N. It follows thus that

|li (a1, a2, a3, . . . , ad )| � 1/4

for all i . This completes the proof.
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lacunary for all i and there exists ai 2 R/Z such that

|li+kdai | � 1/4 for all k 2 N. It follows thus that

|li (a1, a2, a3, . . . , ad )| � 1/4

for all i . This completes the proof.
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Katznelson proved more. He (and also Pollington and de Mathan)

showed that there is dimension 1 set of a 2 R/Z such that

inf
i
|lia| > 0.

But this was not the end of his goal.

84 / 96



Katznelson proved more. He (and also Pollington and de Mathan)

showed that there is dimension 1 set of a 2 R/Z such that

inf
i
|lia| > 0.

But this was not the end of his goal.

85 / 96



Recurrence and chromatic numbers

Divide (R/Z)d into measurable parts each of radius less that 1/8
labelled, say, {1, 2, . . . , n}.

Consider the function

f : Z ! {1, 2, . . . , n} given by f (i) := label of the partition containing ia.

Thus we have a colouring of Z such that no two integers with the same

colour are separated by a li .

Consider the graph structure on Z which is obtained by connecting m
and n by an edge if and only if they di↵er by li for some i . Let us call
the graph Zl. Katznelson thus proved the following theorem:

Theorem

Zl has a finite chromatic number.

This was the question which Erdös had proposed.
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Kř́ıž’s construction

Kř́ıž’s had shown that there are sets which are Bohr recurrent but

not measure recurrent.

His construction involved giving a graph

structure on Z in which

Graphs with larger and larger chromatic numbers could be

embedded.

It had an independent set of positive density (subsets of Z

where no two integers are joined by an edge).
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Topological recurrence

A set S ⇢ N is called topologically recurrent if for all minimal

systems (X ,T ) and open sets U ⇢ X there exists n 2 S such that

U \ T�n(U) is non-empty.

This connects to what we have discussed before by the following

theorem:

Theorem

A set S is topologically recurrent if and only if the graph generated
by it has an infinite chromatic number.

If a set is measure recurrent then it is topologically recurrent. If a

set is topologically recurrent then it is Bohr recurrent. Lacunary

sets are not topologically recurrent. By Kř́ıž’s construction there

are sets which are Bohr recurrent but not measure recurrent.
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The following question remains and goes back to Katznelson,

Følner and Bogolyubov.

Question

Is there a set which is topologically recurrent but not Bohr
recurrent?
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