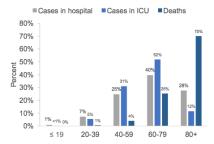

REAL-TIME MODELLING OF THE COVID-19 EPIDEMIC: PERSPECTIVES FROM BRITISH COLUMBIA (I)

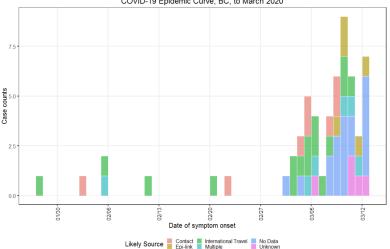
Caroline Colijn

¹Department of Mathematics Simon Fraser University


WHAT IS COVID19 AND WHERE DID IT COME FROM?

- Corona virus disease 2019 is caused by a coronavirus called Sars-CoV-2
- It's like the first SARS: severe acute respiratory syndrome
- Likely came from wild animal populations (bats)
- Coronaviruses can infect many species
- First detected December 2019 in Wuhan, China

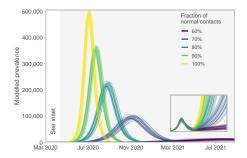
Why is it such a big deal?


- It can cause severe illness, and not only in the elderly
- Symptoms
 - cough, fever
 - difficulty breathing, pneumonia in both lungs
 - Ioss of taste, smell, chest pain
- Severe illness:
 - organ failure
 - acute kidney injury
 - heart failure
 - Death

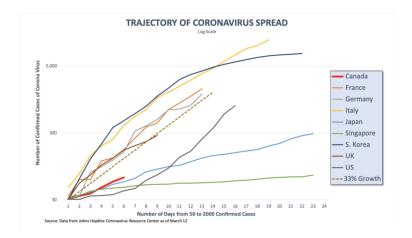
Proportion of COVID-19 cases hospitalized, admitted to ICU and died in Canada by age group, as of 13 May 2020. Source: PHAC

BC EARLY TIMELINE

Figure 1: Epidemic curve for COVID-19 confirmed cases in BC, including likely acquisition/exposure, January 1-March 13, 2020

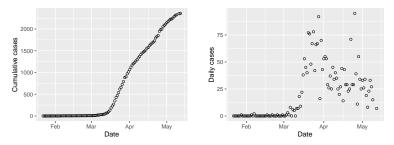


COVID-19 Epidemic Curve, BC, to March 2020


MODELLING: EARLY AIMS

- When will this start to spread in BC?
- How many people might get infected in total?
- What are the best actions to stop transmission?

We were asked to forecast case counts so that BCCDC could forecast hospitalizations and ventilator needs


CUMULATIVE COUNTS AND BENDING CURVES

These plots can hide a multitude of modelling sins! READ WITH CAUTION.

MODELLING CONSIDERATIONS

- Basic epidemiology: *R*₀, duration of infection, exposed class, delay to symptom onset
- When does transmission happen?
- Time to reporting, noise in reporting

Cumulative counts hide a lot

Where might modellers get their inputs?

Type 1: Aggregate data

- daily case counts by location
- daily hospitalization, ICU, deaths by locn

Type 2: Individual "line list" data

- times of exposure, symptoms, outcomes
- age, location
- contact data: likely source(s), locations, contacts' symptom time and data
 More contact tracing data: app-based; detailed

Type 3: (a) Serology : build-up of immunity in populations and (b) COVID19 virus prevalence

- NOT restricted to at-risk
- by age in general population
- serial samples needed to monitor
- does not necessarily need high volumes

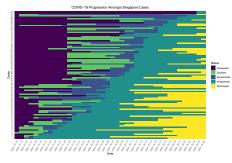
Type 4: Behavioural data (not specific to infection/exposure)

- mobile phone: contact and mobility
- surveys: distancing behaviour
- socio economic, age, other risk

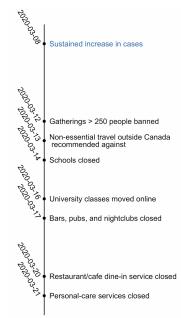
Short term (1-6 weeks)

- basic knowledge of virus dynamics in Canada
- immediate health care capacity planning
- risk forecasting, estimation
- assess effectiveness of distancing

Medium term (2-9 weeks)

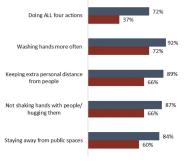

- peak timing and size
- peak size by age, location
- healthcare capacity planning
- assess need for continuing distancing measures, by age, location, risk
- Plan how to relax distancing

Medium to long term


- Monitor impacts of distancing
- If distancing works well: how do we get out of distancing and resume normal activity?
- If not: how to amplify, make more precise and targeted plans (stratified)
- Prioritize therapeutics
- Targeted/precise distancing

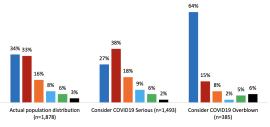
WE USED SINGAPORE AND TIANJIN, CHINA FOR SOME KEY INPUTS

- Time to symptom onset
- Time to infect others: this uses contact tracing data
- Take unknown intermediates into account
- KEY FINDING: transmission before symptom onset

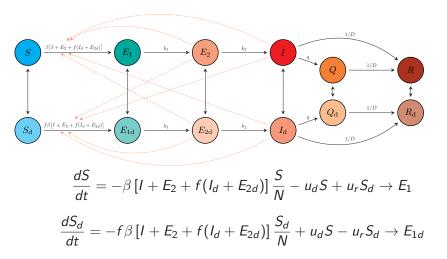


BACK TO BC'S TIMELINE

SURVEY, LATE MARCH: IS COVID19 SERIOUS?


COVID-19 precautions being taken

Consider COVID19 Serious (n=1,493)


Consider COVID19 Overblown (n=385)

Federal vote 2019 Those who say COVID-19 threat in Canada is serious versus overblown

CPC Liberal NDP BLOC Green Other

A MATHEMATICAL MODEL WITH DISTANCING

Other equations: linear flows between compartments.

DISTANCING AND CONTACT

- Those who are distancing are less likely to go out and contact others.
- When they do go out, they are less likely to see other distancers.
- Contact reduces by f twice. (f^2 term)

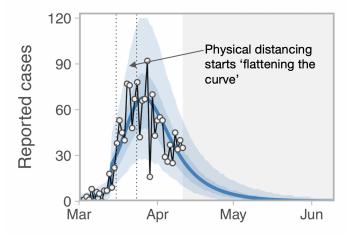
$$\frac{dS_d}{dt} = -f\beta \left[I + E_2 + f(I_d + E_{2d})\right] \frac{S_d}{N} + u_d S - u_r S_d \rightarrow E_{1d}$$

Observation: what do we observe from the model?

- People do not get tested at the moment of exposure.
- Testing rates changed with time
- Exposed \rightarrow symptoms \rightarrow tested \rightarrow reported
- We model noisy and delayed observation:

$${\sf E}({\sf cases}(r)) = {\sf testing}(r) \int_0^{45} ({\sf Symptom \ onset \ } r-s) w(s) ds$$

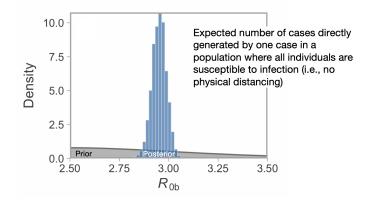
Figure 2: BCCDC public health laboratory testing data by client and health authority, BC, January 1-March 13, 202

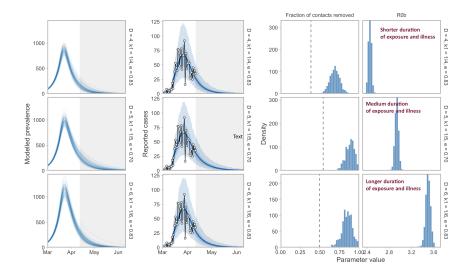

We estimate the impact of distancing

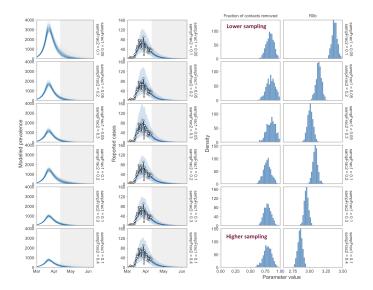
- We model distancing increasing from March 15 to March 22.
- The contact parameter f goes from 1 down to an estimated number f_2 .
- The likelihood of a set of parameters is negative binomial. Mean: expected case counts. Dispersion: estimated (ϕ).
- We fit the model using Bayesian inference, with C_r the cases on day r:

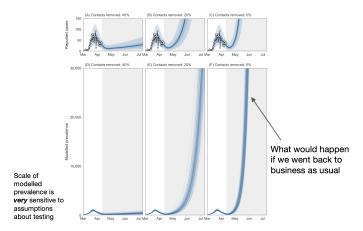
$$\mathsf{P}\left(R_{0\mathrm{b}}, f_2, \phi | \{C_r\}\right) \propto \mathsf{P}\left(\{C_r\} | R_{0\mathrm{b}}, f_2, \phi\right) \mathsf{P}(R_{0\mathrm{b}}) \mathsf{P}(f_2) \mathsf{P}(\phi)$$

- We have a prior for R_0 and dispersion
- We fix other parameters, then explore.
- And so can you! R package covidseir

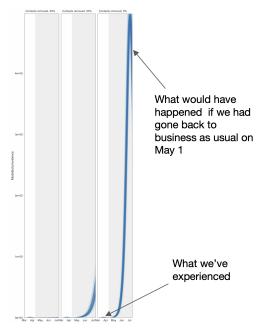

RESULT: THE FIT IS GOOD


POSTERIOR DISTANCING IMPACT IS STRONG

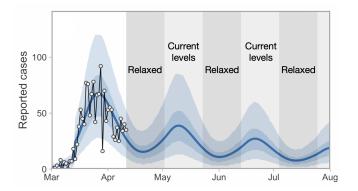

Posterior reproductive number is 3 ... or is it?


DISTANCING IS ROBUST, R_0 ISN'T

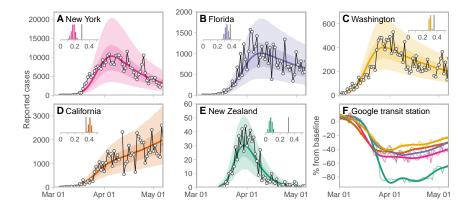
DISTANCING IS ROBUST, PREVALENCE ISN'T

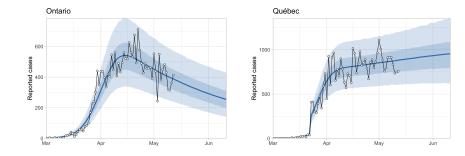


WHAT HAPPENS IF WE STOP DISTANCING?



We do not think there is meaningful immunity – declines are due to distancing.


WE HAVE NOT SEEN "THE FIRST WAVE"


OPTIONS FOR REDUCING DISTANCING

Where do we go from here?

QUEBEC AND ONTARIO

NEXT STEPS FOR THIS MODELLING

- Relate strength of distancing to mobility data
- That way, estimate risk sooner
- Related project: how soon can we detect effect of behavioural change?
- The population isn't well-mixed, or all the same: modelling high-risk settings (meat packing etc), introductions

WHAT WE DON'T KNOW (HIGHLIGHTS)

- How many British Columbians have COVID19 today? last week?
- How many have ever had COVID19? In Canada?
 - Serological data: up to 10% in Spain. Likely very low here.
- How infectious are children? What happens if we re-open schools?
- What activities correspond to what level of contact, or contact reduction?
- What do contact patterns in Canada today look like? (by age, by activity level, by geography)

THANK YOU

- Sean Anderson, Andrew Edwards Fisheries and Oceans
- Jessica Stockdale, Nicola Mulberry, Dan Coombs
- BCCDC modelling team
- British Columbia Centre for Disease Control
- Genome BC
- Michael Smith Foundation for Health Research

© GitHub seananderson/covidseir Bayesian SEIR model to estimate physical-distancing effects seananderson/covidseir

