Shifting the ordinates of zeros of the Riemann zeta function

William Banks University of Missouri

Comparative Prime Number Theory Symposium

Riemann zeta function

$$\zeta(s) := \sum_{n \geqslant 1} n^{-s} = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$$

Dirichlet L-function

$$L(s,\chi) := \sum_{n \geqslant 1} \chi(n) n^{-s} = \prod_{p \text{ prime}} (1 - \chi(p) p^{-s})^{-1}$$

Riemann zeta function

$$\zeta(s) := \sum_{n=1}^{\infty} n^{-s} = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$$

Riemann Hypothesis

$$\zeta(\sigma + it) \neq 0$$
 if $\sigma > \frac{1}{2}$

Theorem (B- 2023). For any $\theta > \frac{1}{3}$, there are constants $c_1, c_2 > 0$ that depend only on θ such that the following property holds. Let χ_1 and χ_2 be distinct

depend only on
$$\theta$$
 such that the following property holds. Let χ_1 and χ_2 be distinct primitive Dirichlet characters modulo q . Then, for any $T \geqslant c_1 q^{\theta}$, the functions $L(s,\chi_1)$ and $L(s,\chi_2)$ have different zeros (counted with multiplicity) in the region $\{s = \sigma + it \in \mathbb{C} : 0 < \sigma < 1, \ T < \gamma < T + c_2 q^{\theta} \log T\}$.

In other words, the function

$$rac{L(s,\chi_1)}{L(s,\chi_2)} + rac{L(s,\chi_2)}{L(s,\chi_1)}$$
was at least one note in the region

has at least one pole in the region.

COMPARING ZEROS OF ISTINCT DIRICHLET $\it L$ -FUNCTIONS Landau (1912)

other than x itself.

 $\sum_{\substack{\rho=\beta+i\gamma\\1<\gamma\leqslant T}} x^{\rho} = -\frac{T}{2\pi}\Lambda(x)\mathbf{1}_{\mathbb{Z}}(x) + O_x(\log T)$

Gonek (1993) gave a uniform version with an explicit error in terms of x and T

To compare $L(s, \chi_1)$ and $L(s, \chi_2)$, one needs a variant of Gonek's theorem for arbitrary Dirichlet L-functions:

Theorem. Let χ be a primitive Dirichlet character mod q.

Uniformly for
$$x > 1$$
 and $T_2 > T_1 > 1$, we have
$$T_2 - T_1 \Lambda(x) \Gamma(x) \overline{\Gamma(x)} = O(T)$$

$$\sum_{\substack{\rho=\beta+i\gamma\\T_1<\gamma where the sum runs over the nontrivial zeros $\rho=\beta+i\gamma$$$

where the sum runs over the nontrivial zeros $\rho = \beta + i\gamma$ of $L(s,\chi)$ for which $T_1 < \gamma < T_2$, $E := x \log 2x \log_2 3x + x \log 2x \cdot \min \left\{ \frac{T_2}{x}, \frac{1}{\langle x \rangle} \right\} + x \log 2qT_2 \cdot \log_2 3x,$ and $\langle x \rangle$ is the distance from x to the nearest prime power

SHIFTING THE ORDINATES OF ZEROS OF THE RIEMANN ZETA FUNCTION

Let $y \neq 0$ and C > 0. Under the Riemann Hypothesis, for all large T we have $\zeta(\frac{1}{2} + i\gamma) = 0$ and $\zeta(\frac{1}{2} + i(\gamma + y)) \neq 0$

for at least one γ in the interval $[T, T(1+\varepsilon)]$, where

 $\varepsilon := T^{-C/\log \log T}$

Theorem (B- 2024). Assume RH. For any $y \neq 0$ and A > 0, there are numbers $T_0 = T_0(y, A) > 0$ and $\Theta = \Theta(A) > 0$ for which

$$the \ following \ holds. \ Given \ T_1, T_2 \ satisfying \ 2T_1 > T_2 > T_1 > T_0, \ let$$
 $\Delta := (T_2 - T_1), \qquad \mathbf{T} := \frac{1}{2}(T_1 + T_2), \qquad \mathscr{L} := \exp\left(\frac{\log \mathbf{T}}{\log \log \mathbf{T}}\right).$

Then, for every prime number x in the range

Then, for every prime number
$$x$$
 in the range $\mathbf{T}\mathscr{L}^{-\Theta} < x < \mathrm{e}^{\pi/|y|} \cdot \mathbf{T}\mathscr{L}^{-\Theta}.$

we have

$$\sum_{i} x^{\rho} \zeta(\rho + iy) = \frac{1}{2\pi} (x^{-iy} - 1) \Delta \log \mathbf{T} + O(\Delta \log \mathcal{L} + \mathbf{T} \mathcal{L}^{-A}),$$

 $\rho = \frac{1}{2} + i\gamma$ $T_1 < \gamma < T_2$

where the sum in $\ \ \ \ \ \ \ \ \ \$ runs over zeros of $\zeta(s)$ (each zero is summed according to its multiplicity), and the implied constant in depends only on y and A.

Sketch of the proof

By Cauchy's theorem (and T_0 large) we have

$$\sum_{\substack{\rho = \frac{1}{2} + i\gamma \\ T_1 < \gamma < T_2}} x^{\rho} \zeta(\rho + iy) = \frac{1}{2\pi i} \left(\int_{c+iT_1}^{c+iT_2} + \int_{c+iT_2}^{b+iT_2} + \int_{b+iT_2}^{b+iT_1} + \int_{b+iT_1}^{c+iT_1} \right) \mathcal{D}_y(s) x^s ds$$

$$= I_1 + I_2 + I_3 + I_4$$

$$\mathcal{D}_{y}(s) := \frac{\zeta'}{\zeta}(s)\zeta(s+iy)$$

For I_1 , we use the series representation

$$\mathcal{D}_y(s) = \sum_n D_y(n) n^{-s}$$
 with $D_y(n) := -\sum_{ab=n} \Lambda(a) b^{-iy}$

ab=n

to derive the estimate

$$I_{1} = \frac{1}{2\pi} \int_{T_{1}}^{T_{2}} \mathcal{D}_{y}(c+it,\chi) \, x^{c+it} \, dt = \frac{x^{c}}{2\pi} \sum_{n} \frac{D_{y}(n)}{n^{c}} \int_{T_{1}}^{T_{2}} \left(\frac{x}{n}\right)^{it} \, dt$$

$$= -\frac{\Delta}{2\pi} \log x + O(x \log^{2} x)$$

$$I_{1} = \frac{1}{2\pi} \int_{T_{1}}^{T_{2}} \left(\frac{x}{n}\right)^{it} \, dt$$

Using the expansion

$$\frac{\zeta'}{\zeta}(s) = \sum_{\substack{\rho = \beta + it \\ |\gamma - t| < 1}} \frac{1}{s - \rho} + O(\log|t|)$$

we have

$$I_2 = rac{1}{2\pi i} \sum_{\substack{
ho=rac{1}{2}+i\gamma\|\gamma-T_2|<1}} \int_{c+iT_2}^{b+iT_2} rac{\zeta(s+iy)x^s\,ds}{s-
ho} + O(exttt{error})$$

and the rest is bounded using a method of Gonek.

Using the functional equations

followed by the change of variables $s \mapsto 1 - s$, the term I_3 equals

$$\frac{-1}{2\pi i} \int_{b'-iT_2}^{b'-iT_1} \left\{ -\frac{\zeta'}{\zeta}(s) + \log \pi - \frac{1}{2}\psi\left(\frac{s}{2}\right) - \frac{1}{2}\psi\left(\frac{1-s}{2}\right) \right\} \zeta(s-iy) \mathcal{X}(1-s+iy) x^{1-s} ds$$

where

$$b' := 1 - b = \frac{1}{2} + \frac{1}{\log \log \mathbf{T}}.$$

Shifting the line of integration back to $\sigma=c$, we have $I_3=J_1+J_2+J_3+O(\text{acceptable error}),$

where

$$J_1 \coloneqq rac{x}{2\pi i} \int_{c-iT_2}^{c-iT_1} rac{\zeta'}{\zeta}(s) \zeta(s-iy) \mathcal{X}(1-s+iy) x^{-s} \, ds, \ J_2 \coloneqq rac{-x \log \pi}{2\pi i} \int_{c-iT_2}^{c-iT_1} \zeta(s-iy) \mathcal{X}(1-s+iy) x^{-s} \, ds, \ J_3 \coloneqq rac{x}{4\pi i} \int_{c-iT_2}^{c-iT_1} ig\{\psiig(rac{s}{2}ig) + \psiig(rac{1-s}{2}ig)ig\}\zeta(s-iy) \mathcal{X}(1-s+iy) x^{-s} \, ds.$$

These integrals are estimated using the stationary phase method, taking into account the estimate

$$\mathcal{X}(1-\sigma+it) = e^{\pi i/4} \exp\left(-it \log\left(\frac{|t|}{2\pi e}\right)\right) \left(\frac{|t|}{2\pi}\right)^{\sigma-1/2} \left\{1 + O_{\mathcal{I}}(|t|^{-1})\right\}.$$

A key ingredient is the following

LEMMA. Assume RH. Let
$$y \neq 0$$
, $t > t' \geqslant 10$, and put $\Delta' := t - t'$. For any κ in the range $e \leqslant \kappa \leqslant t/e$, we have

$$\sum_{t' < n \le t} D_y(n) n^{iy} \ll \Delta' \{ |y|^{-1} + (\kappa/t)^{1/2} \log^2(t/\kappa + |y|) + \log \kappa \} + t/\kappa + (t\kappa)^{1/2} \log^2 t$$

which uses a result of Banks and Sinha:

$$RH \iff \sum_{i} \Lambda(n) n^{iy} = \frac{x^{1+iy}}{1+iy} + O\left(x^{1/2} \log^2(x+|y|)\right) \qquad (y \in \mathbb{R}, \ x \geqslant 2)$$

