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Chebyshev’s bias

e Chebyshev, 1853: Claims that we should have 7 (z; 4, 3) > m(x;4, 1) for large .
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Classical Chebyshev’s bias

Chebyshev’s bias

e Chebyshev, 1853: Claims that we should have 7 (z; 4, 3) > m(x;4, 1) for large .

e Phragmén, 1891:

> kp - > k1k+log2

pk<z pk<z
k71m0d4 pk53m0d4

changes sign infinitely many times.
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sical Chebyshev’s bias

Chebyshev’s bias

e Chebyshev, 1853: Claims that we should have 7 (z; 4, 3) > m(x;4, 1) for large .

e Phragmén, 1891:

> kp - > k1k+log2

pk<z pk<z
pF=1mod 4 pk =3 mod 4

changes sign infinitely many times.

e Littlewood, 1914:
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Chebyshev’s bias

Let

Puszi:i={x > 2| n(x;4,3) > w(x;4,1)}.




Chebyshev’s bias

Let
Puszi:i={x > 2| n(x;4,3) > w(x;4,1)}.

We expect Py;3,1 to be "large” in some sense.
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Classical Chebyshev’s bias

Chebyshev’s bias

Let
Puszi:i={x > 2| n(x;4,3) > w(x;4,1)}.

We expect Py;3,1 to be "large” in some sense.
e Conjecture (Knapowski-Turan, 1962):

d(Pa;z,1) := lim Pasa 012 X]| _ 1.

X —>+oo X
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sical Chebyshev’s bias

Chebyshev’s bias

Let
Puszi:i={x > 2| n(x;4,3) > w(x;4,1)}.

We expect Py;3,1 to be "large” in some sense.
e Conjecture (Knapowski-Turan, 1962):

i (Pasa0[2X]]
d(Pyz,1) = XLHEN < =1.
e Kaczorowski, 1995 : If L(s, x4) satisfies GRH (Generalized Riemann Hypothesis),
then
d(Pu3,1) < 0,9594595. ..

and B
d(Paz1) > 0,999989360 . . .
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sical Chebyshev’s bias

Chebyshev’s bias

Let
Puszi:i={x > 2| n(x;4,3) > w(x;4,1)}.

We expect Py;3,1 to be "large” in some sense.
e Conjecture (Knapowski-Turan, 1962):

: PaziN[2,X
d(P4;3,1) = XEIEOO W _

1.

e Kaczorowski, 1995 : If L(s, x4) satisfies GRH (Generalized Riemann Hypothesis),
then
d(Pas1) < 0,9594595 . ..
and B
d(Paz1) > 0,999989360 . . .

In particular, d(Pa;3,1) does not exist!
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Classical Chebyshev’s bias

Chebyshev’s bias
Let

Puszi:i={x > 2| n(x;4,3) > w(x;4,1)}.
We expect Py;3,1 to be "large” in some sense.

e Conjecture (Knapowski-Turan, 1962):

d(Pa;z,1) := lim Pasa 012 X]| _ 1.

X —>+oo X

e Kaczorowski, 1995 : If L(s, x4) satisfies GRH (Generalized Riemann Hypothesis),
then
d(Pu3,1) < 0,9594595. ..

and B
d(Paz1) > 0,999989360 . . .

In particular, d(Pa;3,1) does not exist!
* Rubinstein-Sarnak, 1994 : If L(s, x4) satisfies GRH and LI (Linear Independence),

b'e
1 dt
6(Paza) == 1 / 17’4;3,1(0?
2

x_lffoo log X

exists and 6(Pa;3,1) =~ 0,9959. ..
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Rubinstein and Sarnak’s results

If the Dirichlet characters modulo g statisfy GRH and LI then:

e [fa=0Omod gand b= Omod ¢, orif a = X mod g et b = X mod ¢ then
6(Pq;a,b):%~
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Rubinstein and Sarnak’s results

If the Dirichlet characters modulo g statisfy GRH and LI then:

e [fa=0Omod gand b= Omod ¢, orif a = X mod g et b = X mod ¢ then
6(Pq;a,b):%~

* Ifa =X mod g and b = O mod g then § < §(Pgap) < 1.
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Classical Chebyshev’s bias

Rubinstein and Sarnak’s results

If the Dirichlet characters modulo g statisfy GRH and LI then:

e [fa=0Omod gand b= Omod ¢, orif a = X mod g et b = X mod ¢ then
6(Pgza.b) = %
* Ifa =X mod g and b = O mod g then § < §(Pgap) < 1.

e If g is of the form p™ or 2p®, then 3 < 6(Pg:nr,r) < 1, where
Pyngr,r:={x>2]|m(x;q, NR) > 7(z;q,R)},

n(z;q,R) = #{p <z | p=0mod ¢}

and
m(xz;q, NR) = #{p < z | p =X mod ¢}.
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sical Chebyshev’s bias

The LI hypothesis

Explicit formula:

W(ez;q,61/2/m 7Q7 _#\/{T # /{a

ei’yxz

+ ) x(b)*x(a)zw+0

XE€EXq Ix
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Classical Chebyshev’s bias

The LI hypothesis

Explicit formula:
(e ;q,el/Q/m i, b _#\/{T #\/{T
- ei’VxI 1

XEXq Ix

Conjecture (LI).

The (multi)set |, . X, {r>0|L (3 +iv x) =0} is linearly independent over
Q.
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Classical Chebyshev’s bias

The LI hypothesis

Explicit formula:
(e ;q,el/Q/m i, b _#\/{T #\/{T
- ei’VxI 1

XE€EXq Ix

Conjecture (LI).

The (multi)set |, . X, {r>0|L (3 +iv x) =0} is linearly independent over
Q.

The Kronecker-Weyl equidistribution theorem tells us that *7* behave like
independent uniform random variables on the circle.
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Classical Chebyshev’s bias

Generalizations

There have been many generalizations:

e Fiorilli (2014) showed that the quantity §(¢; N R, R) takes dense values in [1/2, 1].
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Classical Chebyshev’s bias

Generalizations

There have been many generalizations:

e Fiorilli (2014) showed that the quantity §(¢; N R, R) takes dense values in [1/2, 1].

* Lamzouri studied what happens when the number of contestants varies.
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Generalizations

There have been many generalizations:

e Fiorilli (2014) showed that the quantity §(¢; N R, R) takes dense values in [1/2, 1].
* Lamzouri studied what happens when the number of contestants varies.

* Many quantities relevant to prime number theory have also been considered
(point-counting over elliptic curves (Fiorilli), Mertens theorems (Lamzouri),
weighted Mobius sums (Akbary-Ng-Shahabi), "Fouvry’s bias" (Devin), etc.)
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Generalizations

There have been many generalizations:

e Fiorilli (2014) showed that the quantity §(¢; N R, R) takes dense values in [1/2, 1].
* Lamzouri studied what happens when the number of contestants varies.

* Many quantities relevant to prime number theory have also been considered
(point-counting over elliptic curves (Fiorilli), Mertens theorems (Lamzouri),
weighted Mobius sums (Akbary-Ng-Shahabi), "Fouvry’s bias" (Devin), etc.)

¢ Ng (2000) generalized Rubinstein and Sarnak’s method to study "Chebotarev races”
in number fields.
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Classical Chebyshev’s bias

Generalizations

There have been many generalizations:

Fiorilli (2014) showed that the quantity d(g; N R, R) takes dense values in [1/2, 1].
Lamzouri studied what happens when the number of contestants varies.

Many quantities relevant to prime number theory have also been considered
(point-counting over elliptic curves (Fiorilli), Mertens theorems (Lamzouri),
weighted Mobius sums (Akbary-Ng-Shahabi), "Fouvry’s bias" (Devin), etc.)

Ng (2000) generalized Rubinstein and Sarnak’s method to study "Chebotarev races"
in number fields.

Weakening of GRH or LI (works of Martin-Ng, Devin, B.).
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Classical Chebyshev’s bias

Generalizations

There have been many generalizations:

Fiorilli (2014) showed that the quantity d(g; N R, R) takes dense values in [1/2, 1].
Lamzouri studied what happens when the number of contestants varies.

Many quantities relevant to prime number theory have also been considered
(point-counting over elliptic curves (Fiorilli), Mertens theorems (Lamzouri),
weighted Mobius sums (Akbary-Ng-Shahabi), "Fouvry’s bias" (Devin), etc.)

Ng (2000) generalized Rubinstein and Sarnak’s method to study "Chebotarev races"
in number fields.

Weakening of GRH or LI (works of Martin-Ng, Devin, B.).

Cha (and later Cha-Im) adapted the Rubinstein-Sarnak framework to function
fields.
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The finite field case

The canonical table

Usual arithmetic ‘ Arithmetic over finite fields

Z | Fq[T]




The finite field case

The canonical table

Usual arithmetic ‘ Arithmetic over finite fields
7 Fq[T]
(Positive) Primes (Monic) Irreducible polynomials
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The finite field case

The canonical table

Usual arithmetic ‘ Arithmetic over finite fields

7 Fq[T]

(Positive) Primes (Monic) Irreducible polynomials
n<x \P|:qdegP:#Fq[T]/(P)§X
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The finite field case

The canonical table

Usual arithmetic

‘ Arithmetic over finite fields

Z F, (1]

(Positive) Primes (Monic) Irreducible polynomials
n<x |P| = ¢%5 " = #I,[T]/(P) < X
¢(n) (M) = # (F4[T]/(P))"
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The finite field case

The canonical table

Usual arithmetic ‘ Arithmetic over finite fields

7 Fq[T]

(Positive) Primes (Monic) Irreducible polynomials
n<w |P| = qi8" = #F,[T]/(P) < X
o(n) (M) = # (Fq[T)/(P))*

Dirichlet characters mod g | Characters of (Fy[T]/(P))*
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The finite field case

The canonical table

Usual arithmetic

Arithmetic over finite fields

Z

(Positive) Primes
n<x

¢(n)

F, (1]

(Monic) Irreducible polynomials
[P =g " = #F,[T]/(P) < X
P(M) = # (Fq[T]/(P))"

Dirichlet characters mod g | Characters of (Fy[T]/(P))*
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The finite field case

Irreducible polynomial races

e Let M € F,[T] be non-constant and A € F4[T] coprime with M. Then

w(n; M, A) := #{P € F,[T] irreducible | deg P < n, P = Amod M}

n

q
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The finite field case

Irreducible polynomial races

e Let M € F,[T] be non-constant and A € F4[T] coprime with M. Then

II(X; M, A) := #{P € F,[T] irreducible | |P| = ¢"**" < X = ¢", P = Amod M}
1 X

Xohoo (M) log, X~
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The finite field case

Irreducible polynomial races

e Let M € F,[T] be non-constant and A € F4[T] coprime with M. Then

w(n; M, A) := #{P € F,[T] irreducible | deg P < n, P = Amod M}

n

q

e Define
m(n; M,0) := #{P € F,[T] irreducible | deg P = n, P = O mod M},
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The finite field case

Irreducible polynomial races

e Let M € F,[T] be non-constant and A € F4[T] coprime with M. Then

w(n; M, A) := #{P € F,[T] irreducible | deg P < n, P = Amod M}

n

q

e Define
m(n; M,0) := #{P € F,[T] irreducible | deg P = n, P = O mod M},

PM;g’D = {X 2 1 | ﬂ(X,M,‘E) > 7-‘—()(7]\4-7|:|)}

Alexandre Bailleul CPNT over function fields



The finite field case

Irreducible polynomial races

e Let M € F,[T] be non-constant and A € F4[T] coprime with M. Then

w(n; M, A) := #{P € F,[T] irreducible | deg P < n, P = Amod M}

n

q

e Define
m(n; M,0) := #{P € F,[T] irreducible | deg P = n, P = O mod M},

PM;g’D = {X 2 1 | ﬂ(X,M,‘E) > ﬂ—(XvM: D)}
and, if it exists, d(Py;x,0) == XliIE %#(PM;&D N [1, X]) its natural density.
—+oo
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The finite field case

Irreducible polynomial races

e Let M € F,[T] be non-constant and A € F4[T] coprime with M. Then

w(n; M, A) := #{P € F,[T] irreducible | deg P < n, P = Amod M}

n

q

e Define
m(n; M,0) := #{P € F,[T] irreducible | deg P = n, P = O mod M},

Puro={X>1|n(X;M,K)>n(X;M,0O)}
and, if it exists, d(Py;x,0) == XliI-Is-l %#(PM;&D N [1, X]) its natural density.
—+oo

Theorem (Cha, 2008).

Let M € Fy[T] be irreducible. Assume LI, for the zeroes of the Dirichlet L-
functions modulo M. Then d(Pas;x,0) exists and one has

1/2 < d(Puym,o) < 1.
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The hypothesis LI

Theorem (Weil, 1940).

For each primitive Dirichlet character x modulo M € F4[T, the function

A A
L(S,X) = Z Tf(q‘S) = Z q?s((geg)A

A€F,[T) A€FR,[T]

is a polynomial in u := ¢~ ° with integer coefficients:

M(x)

LX) = L(s,x) = [] (1=as00u)  with a;(x) = v/, 6;(x) € (—m, 7).

j=1
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The finite field case

The hypothesis LI

Theorem (Weil, 1940).

For each primitive Dirichlet character x modulo M € F4[T, the function

A A
L(&X) = Z Tﬁﬂs) = Z q?sctgeg)A

ACF[T] AEF[T]

is a polynomial in u := ¢~ ° with integer coefficients:

M (x)
LX) = L(s,x) = [] (1=as00u)  with a;(x) = v/, 6;(x) € (—m, 7).

Conjecture (LI;).

The (multi)set ({6;(x) | x € X3, 1 <j < M(x)} N (0,7)) U {r} is linearly inde-
pendent over Q.
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The finite field case

About LI,

* When M € F,[T1] is squarefree, there exists a unique primitive quadratic character
xm modulo M (Legendre symbol when M is irreducible).

e LI, is not always true for £(u, x)!
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The finite field case

About LI,

* When M € F,[T1] is squarefree, there exists a unique primitive quadratic character
xm modulo M (Legendre symbol when M is irreducible).
e LI, is not always true for £(u, x)!
o Example (Cha): p =5, M = T® + 3T* + 4T3 + 2T + 2 irreducible. Then
L(u,xar) = 25u? — 25u3 + 15u? — 5u + 1 with ay = \/562%, az = \/564? and we
have d(Py;,x,0) ~ 40% < %
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The finite field case

About LI,

* When M € F,[T1] is squarefree, there exists a unique primitive quadratic character
xm modulo M (Legendre symbol when M is irreducible).
e LI, is not always true for £(u, x)!
o Example (Cha): p =5, M = T® + 3T* + 4T3 + 2T + 2 irreducible. Then
L(u, xar) = 25u* — 25u® + 1502 — 5u + 1 with ag = v/5e 3= Jas = /be g and we
have d(Py;,x,0) ~ 40% < %

o Example (Devin-Meng): ¢ = 9, M = T* + 273 + 2T + a” where Fg = F3(a). Then
L(u,xn) = (1 — 3u)? and we have d(Pprx0) = 1.
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The finite field case

About LI,

* When M € F,[T1] is squarefree, there exists a unique primitive quadratic character
xm modulo M (Legendre symbol when M is irreducible).
e LI, is not always true for £(u, x)!
o Example (Cha): p =5, M = T® + 3T* + 4T3 + 2T + 2 irreducible. Then
L(u, xar) = 25u* — 25u® + 1502 — 5u + 1 with ag = v/5e 3= Jas = /be g and we
have d(Py;,x,0) ~ 40% < %

o Example (Devin-Meng): ¢ = 9, M = T* + 273 + 2T + a” where Fg = F3(a). Then
L(u,xn) = (1 — 3u)? and we have d(Pprx0) = 1.

e We would like to show that Ll still holds for "most" L-functions L(s, xar).
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The finite field case

About LI,

* When M € F,[T1] is squarefree, there exists a unique primitive quadratic character
xm modulo M (Legendre symbol when M is irreducible).

e LI, is not always true for £(u, x)!
o Example (Cha): p =5, M = T® + 3T* + 4T3 + 2T + 2 irreducible. Then
L(u,xar) = 25u? — 25u3 + 15u? — 5u + 1 with ay = \/BehTﬁ, az = \/564? and we
have d(Py;,x,0) ~ 40% < %

o Example (Devin-Meng): ¢ = 9, M = T* + 273 + 2T + a” where Fg = F3(a). Then
L(u,xn) = (1 — 3u)? and we have d(Pprx0) = 1.

e We would like to show that LI still holds for "most" L-functions L(s, x ). There
are partial results of Kowalski (2008) in certain one-parameter families of
polynomials M which are not irreducible.
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The finite field case

Some notations

e From now on, Hn(Fq) := {f € F[T] | f monic square-free of degree n} and for
f € Hn(Fq), xs is the unique primitive quadratic character modulo f.

Alexandre Bailleul d er function fields



The finite field case

Some notations

e From now on, Hn(Fq) := {f € F[T] | f monic square-free of degree n} and for
f € Hn(Fq), xs is the unique primitive quadratic character modulo f.

e Wenote g = L"T’IJ the genus of the curve C; with affine equation y*> = f(z). The
numerator of the zeta function of C/ is then L(s, x ).
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The finite field case

Some notations
e From now on, Hn(Fq) := {f € F[T] | f monic square-free of degree n} and for

f € Hn(Fq), xs is the unique primitive quadratic character modulo f.

e Wenote g = L"T’IJ the genus of the curve C; with affine equation y*> = f(z). The
numerator of the zeta function of C/ is then L(s, x ).

* We are interested in the sign of
n . .
II(n; xy) = e (#{h € Fqlt] | xs(h) = 1, hirreducible and degh = n}

— #{h € F4[t] | xy(h) = —1, hirreducible and degh = n})

= 2 ulb),

deg h=n
h irreducible
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The finite field case

Some notations

e From now on, Hn(Fq) := {f € F[T] | f monic square-free of degree n} and for
f € Hn(Fq), Xy is the unique primitive quadratic character modulo f.

e Wenote g = L"T’IJ the genus of the curve C; with affine equation y*> = f(z). The
numerator of the zeta function of C/ is then L(s, x ).

* We are interested in the sign of
II(n; xy) = e (#{h € Fqlt] | xs(h) = 1, hirreducible and degh = n}

— #{h € F4[t] | xy(h) = —1, hirreducible and degh = n})

= 2 ulb),

deg h=n
h irreducible

e When f is irreducible, it is exactly the sign of w(n; f,0) — w(n; f, X)!
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The finite field case

First results

Theorem (B.-Devin-Keliher-Li, 2024).

Let g be a power of p an odd prime and n > 3. Then
<Lifg=1
ey ( )#{f € Hn(Fy) | L(s, xs) doesn’t satisfy LI} <p l?/glq2 ifg=2
<pg LEL ifg >},

where§;, ~ <+ andeg, =
g—+oo

1
8g 4g242g+4°
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The finite field case

Sketch of proof when g =1

e When g = 1, L(u, xs) only has two conjugate roots
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The finite field case

Sketch of proof when g =1

e When g = 1, L(u, x5) only has two conjugate roots so

Geometric condition:

Failure of LI,
= Frobenius eigenvalues are roots of unity
= CY is a supersingular elliptic curve.
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The finite field case

Sketch of proof when g =1

e When g = 1, L(u, x5) only has two conjugate roots so

Geometric condition:

Failure of LI,
= Frobenius eigenvalues are roots of unity
= CY is a supersingular elliptic curve.

* Counting: There are < p supersingular elliptic curves over F,, and we need to
count how many different f € Hs(IFy) or f € Ha(IFy) give rise to isomorphic
elliptic curves over F,
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The finite field case

Sketch of proof when g =1

e When g = 1, L(u, x5) only has two conjugate roots so

Geometric condition:

Failure of LI,
= Frobenius eigenvalues are roots of unity
= CY is a supersingular elliptic curve.

* Counting: There are < p supersingular elliptic curves over F,, and we need to
count how many different f € Ha(F,) or f € H4(F,) give rise to isomorphic
elliptic curves over F, i.e. such that Cy have a given j-invariant = polynomial
condition on the coefficients.
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The finite field case

Sketch of proof when g =1

e When g = 1, L(u, x5) only has two conjugate roots so

Geometric condition:

Failure of LI,
= Frobenius eigenvalues are roots of unity
= CY is a supersingular elliptic curve.

* Counting: There are < p supersingular elliptic curves over F,, and we need to
count how many different f € Ha(F,) or f € H4(F,) give rise to isomorphic
elliptic curves over F, i.e. such that Cy have a given j-invariant = polynomial
condition on the coefficients.

¢ For higher genus, the main steps are the same but are much more complicated.
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The finite field case

Sketch of proof when g > 2

e Step 1 ("Geometric" condition): If £(u, xs) doesn’t satisfy LI, then the Galois
group G of L(u, x ) is not maximal C Way = &4 x (Z/2Z)? (Girstmair’s method).
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The finite field case

Sketch of proof when g > 2

e Step 1 ("Geometric" condition): If £(u, xs) doesn’t satisfy LI, then the Galois
group G of L(u, x ) is not maximal C Way = &4 x (Z/2Z)? (Girstmair’s method).

* Step 2 (Group theory): Either G doesn’t act transitively on the roots, or G doesn’t
contain a transposition, or the projection p(G) of G on &, doesn’t contain a
transposition, or p(G) doesn’t contain any m-cycle with m > ¢/2 prime.

Alexandre Bailleul CPNT over function fields June 21,2024



The finite field case

Sketch of proof when g > 2

e Step 1 ("Geometric" condition): If £(u, xs) doesn’t satisfy LI, then the Galois
group G of L(u, x ) is not maximal C Way = &4 x (Z/2Z)? (Girstmair’s method).

* Step 2 (Group theory): Either G doesn’t act transitively on the roots, or G doesn’t
contain a transposition, or the projection p(G) of G on &, doesn’t contain a
transposition, or p(G) doesn’t contain any m-cycle with m > ¢/2 prime.

¢ Step 3 ("Counting"): Kowalski’s large sieve for Frobenius and a trick due to
Chavdarov provide an upper bound of the form

<pg Hi '+ Hy '+ Hy ' + H, '

where each H; is given by a sum of cardinalities of appropriate sets of polynomials
P € Fy[T), £ # 2, p prime, satisfying properties related to Step 2.
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The finite field case

Sketch of proof when g > 2

e Step 1 ("Geometric" condition): If £(u, xs) doesn’t satisfy LI, then the Galois
group G of L(u, x ) is not maximal C Way = &4 x (Z/2Z)? (Girstmair’s method).

* Step 2 (Group theory): Either G doesn’t act transitively on the roots, or G doesn’t
contain a transposition, or the projection p(G) of G on &, doesn’t contain a
transposition, or p(G) doesn’t contain any m-cycle with m > ¢/2 prime.

¢ Step 3 ("Counting"): Kowalski’s large sieve for Frobenius and a trick due to
Chavdarov provide an upper bound of the form

<pg Hi '+ Hy '+ Hy ' + H, '

where each H; is given by a sum of cardinalities of appropriate sets of polynomials
P € Fy[T), £ # 2, p prime, satisfying properties related to Step 2.

e For the case g = 2, we get an improvement thanks to aresult of
Ahmad-Shparlinski: if LI fails then the Jacobian of C/ splits over F,.
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Exceptional biases

Failure of LI, is not the end of the story

e Example (Cha): p =3, M = T3 4 2T + 1 irreducible. Then
L(u,xm) =3u®>—3u+1= (1 - \/§6%> (1 - \/?:e%w) and we have
d(Pumo) ~ 58,3% > 3.
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Exceptional biases

Failure of LI, is not the end of the story

e Example (Cha): p =3, M = T3 4 2T + 1 irreducible. Then
L(u,xm) =3u®>—3u+1= (1 - \/§6%> (1 - \/?:e%w) and we have
d(Pumo) ~ 58,3% > 3.

e We want to identify "pathologic" configurations that are not necessarily implied by
the failure of Ll
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Exceptional biases

Failure of LI, is not the end of the story

e Example (Cha): p =3, M = T3 4 2T + 1 irreducible. Then
L(u,xm) =3u®>—3u+1= (1 - \/§e%r> (1 - \/?:e%w) and we have
d(Pumo) ~ 58,3% > 3.

e We want to identify "pathologic" configurations that are not necessarily implied by
the failure of Ll: complete bias, reversed bias and lower order bias.
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Exceptional biases

Explicit formulas

e We have access to explicit formulas for II(n; x ) :




Exceptional biases

Explicit formulas

e We have access to explicit formulas for II(n; x ) :

H(n: xs) = = (mo(xs f) = (m=(x) +3) (<)
Z mGJ 1n9 i (xr) -‘rOf( %)7
0;#0,m

where ma (x¢) is the multiplicity of \/ge'’ as a zero of £(u, x).
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Exceptional biases

Explicit formulas

e We have access to explicit formulas for II(n; x ) :

H(n: xs) = = (mo(xs f) = (m=(x) +3) (<)
Z mGJ 1n9 i (xr) -‘rOf( %)7
0;#0,m

where ma (x¢) is the multiplicity of \/ge'’ as a zero of £(u, x).
* We let

Ag(n) = (mo(xs) + ) + (malxs) + 3) (1" + D ma; (xp)e™ 5.
0;#0,m
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Exceptional biases

Explicit formulas

e We have access to explicit formulas for II(n; x ) :

H(n: xs) = = (mo(xs f) = (m=(x) +3) (<)
Z mGJ 1n9 i (xr) -‘rOf( %)7
0;#0,m

where ma (x¢) is the multiplicity of \/ge'’ as a zero of £(u, x).
* We let

Ag(n) = (mo(xs) + ) + (malxs) + 3) (1" + D ma; (xp)e™ 5.
0;#0,m

e Under Ll;, wehave 1/2 < d(A¢(n) > 0) < 1.
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Exceptional

Complete bias

e We say II(n; xr) exhibits a complete bias when d(Af(n) > 0) = 1.
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Exceptional biases

Complete bias

e We say II(n; xr) exhibits a complete bias when d(Af(n) > 0) = 1.

¢ For each square ¢, we can find f € Hs(Fq) such that II(n; x s ) exhibits a complete
bias: it is enough to have £(u, x) = (1 — \/qu)>.

Alexandre Bailleul CPNT over function fields June 21, 2024



Exceptional biases

Complete bias

e We say II(n; xs) exhibits a complete bias when d(Af(n) > 0) = 1.

¢ For each square ¢, we can find f € Hs(Fq) such that II(n; x s ) exhibits a complete
bias: it is enough to have £(u, x) = (1 — \/qu)>.

Theorem (B.-Devin-Keliher-Li, 2024).

We have
—————#{f € Hn(Fq) | II(n; x ) exhibits a complete bias} < logq
#H ( ) n X f P g,p q25g
Where Eg = m.
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Exceptional biases

Complete bias

e Step1: If d(Ay > 0) =1, then d(Af(2n) > 0) = d(Af(2n+1) > 0) =1, and
thanks to a variance inequality, we show that mo(xs) > m~(xy) (and in particular
q is a square).
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Exceptional biases

Complete bias

e Step1: If d(Ay > 0) =1, then d(Af(2n) > 0) = d(Af(2n+1) > 0) =1, and
thanks to a variance inequality, we show that mo(xs) > m~(xy) (and in particular
q is a square).

e Step 2: Trivial upper bound
#{f € Ha(Fy) | d(Ay > 0) = 1} <#{f € Hu(Fy) | molxs) > 0}
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Exceptional biases

Complete bias

e Step1: If d(Ay > 0) =1, then d(Af(2n) > 0) = d(Af(2n+1) > 0) =1, and
thanks to a variance inequality, we show that mo(xs) > m~(xy) (and in particular
q is a square).

e Step 2: Trivial upper bound
#{f € Ha(Fy) | d(Ay > 0) = 1} <#{f € Hu(Fy) | molxs) > 0}

* Step 3: We use the previous large sieve method to reduce the problem to counting
{P € F,[T] monic | deg P = 29, P(X) = ¢ ' X*'P (%)  P(v/q) = 0}

forall £ # 2, p.

Alexandre Bailleul CPNT over function fields June 21,2024



Exceptional

Lower order bias

e We say II(n; xs) exhibits a lower order bias when d(Af(n) = 0) > 0.
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Exceptional biases

Lower order bias

e We say II(n; xs) exhibits a lower order bias when d(A¢(n) = 0) > 0.

* For each odd ¢, we can find f € H5(F,) or f € He(Fy) (genus 2) such that IT(n; x5)
exhibits a lower order bias: it is enough that £(u, xr) is even.
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Exceptional biases

Lower order bias

e We say II(n; xs) exhibits a lower order bias when d(A¢(n) = 0) > 0.

* For each odd ¢, we can find f € H5(F,) or f € He(Fy) (genus 2) such that IT(n; x5)
exhibits a lower order bias: it is enough that £(u, xr) is even.

Theorem (B.-Devin-Keliher-Li, 2024).

We have
¥#{f € Hn(Fq) | II(n; x r) exhibits a lower order bias} < logq
#HA(E,) e e
where Eg = m
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Exceptional biases

Lower order bias

e Step 1: If d(Ay = 0) > 0 then in particular {n € N | A¢(n) = 0} is infinite.

Alexandre Bailleul CPNT over function fields June 21, 2024



Exceptional

Lower order bias

e Step 1: If d(Ay = 0) > 0 then in particular {n € N | A¢(n) = 0} is infinite. But Ay
is a linear recurrence sequence!
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Exceptional biases

Lower order bias

e Step 1: If d(Ay = 0) > 0 then in particular {n € N | A¢(n) = 0} is infinite. But Ay
is a linear recurrence sequence!

® Step 2: A linear recurrence sequence which vanishes infinitely many times is
degenerate (Skolem-Mahler-Lech theorem) : it has two characteristic roots 8; # f3;
such that g—’ is a root of unity.
J
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Exceptional biases

Lower order bias

e Step 1: If d(Ay = 0) > 0 then in particular {n € N | A¢(n) = 0} is infinite. But Ay
is a linear recurrence sequence!

® Step 2: A linear recurrence sequence which vanishes infinitely many times is

degenerate (Skolem-Mahler-Lech theorem) : it has two characteristic roots 8; # f3;
such that g—’ is a root of unity.
J

® Step 3: We use Kowalski’s sieve to reduce the problem to counting the cardinality of

{P € F,[T] unitaire |deg P = 29, P(X) = ¢ /X*P (%) ,

d
Ja # B € Fe, P(a) = P(B) = 0 with (g) = 1},

for every prime ¢ # 2, p.
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Exceptional biases

Reversed bias

1

* We say II(n; x ) exhibits a reversed bias when d(Af(n) < 0) > 3.
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Exceptional biases

Reversed bias

e We say II(n; x¢) exhibits a reversed bias when d(A¢(n) < 0) >

=

¢ For each odd square g, we can find f € H5(F,) or f € He(F4) (genus 2) such that
II(n; xr) exhibits a reversed bias: it is enough to have £(u, xs) = (1 — u /g + u’q)>.
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Exceptional biases

Reversed bias

l\.’)\H

e We say II(n; x¢) exhibits a reversed bias when d(A¢(n) < 0) >

¢ For each odd square g, we can find f € H5(F,) or f € He(F4) (genus 2) such that
II(n; xr) exhibits a reversed bias: it is enough to have £(u, xs) = (1 — u /g + u’q)>.

Theorem (B.-Devin-Keliher-Li, 2024).

We have
1-5
#Hn( )#{f € Hn(Fq) | II(n; x#) exhibits a lower order bias} <, (logqq%
_ 7 1
where Eg — m and§ g‘:\;oo 24g > Tg°

June 21, 2024
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Exceptional biases

Reversed bias

e Step 1: If d(Af < 0) > 1 then the distribution of the values of Ay is not symmetric
with respect to its mean value mo(xs) + 3 > 0, so the torus generated by
{(nm,101(x), - - -,n04(xs)) | n € N} in (R/Z)?"T" doesn’t contain the central point
(m,...,m).
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Reversed bias

e Step 1: If d(Af < 0) > 1 then the distribution of the values of Ay is not symmetric
with respect to its mean value mo(xs) + 3 > 0, so the torus generated by
{(nm,101(x), - - -,n04(xs)) | n € N} in (R/Z)?"T" doesn’t contain the central point
(m,...,m).

* Step 2: We show this is equivalent to ko + »~7_, k;0;(xs) = 0 mod 27 with
ko, ..., kg € Z with even sum.
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Exceptional biases

Reversed bias

e Step 1: If d(Af < 0) > 1 then the distribution of the values of Ay is not symmetric
with respect to its mean value mo(xs) + 3 > 0, so the torus generated by
{(nm,101(x), - - -,n04(xs)) | n € N} in (R/Z)?"T" doesn’t contain the central point
(m,...,m).

* Step 2: We show this is equivalent to ko + »~7_, k;0;(xs) = 0 mod 27 with
ko, ..., kg € Z with even sum.

e Step 3: The quantity (—1)"° H?:l a;(xs)¥ € Z, is fixed by G. This implies that the
sequence Ay is degenerate, or G’ doesn’t contain certain types of permutations.
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Exceptional biases

Reversed bias

Step 1: If d(Ay < 0) > 1 then the distribution of the values of Ay is not symmetric
with respect to its mean value mo(xs) + 3 > 0, so the torus generated by
{(nm,101(x), - - -,n04(xs)) | n € N} in (R/Z)?"T" doesn’t contain the central point
(m,...,m).

Step 2: We show this is equivalent to ko + Zf:l k;0;(xs) = 0 mod 27 with
ko, ..., kg € Z with even sum.

Step 3: The quantity (—1)*° H?:l a;(xs)¥ € Z, is fixed by G. This implies that the
sequence Ay is degenerate, or G’ doesn’t contain certain types of permutations.

Step 4: By Dedekind’s theorem, this means that £(u, xs) doesn’t admit certain
types of factorizations modulo large enough primes ¢ and we conclude using the
large sieve and some combinatorics on polynomials over finite fields.
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Thank you for your attention!
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